图书简介
A newly updated and expanded edition that combines theory and applications of turbomachinery while covering several different types of turbomachinery In mechanical engineering, turbomachinery describes machines that transfer energy between a rotor and a fluid, including turbines, compressors, and pumps. Aiming for a unified treatment of the subject matter, with consistent notation and concepts, this new edition of a highly popular book provides all new information on turbomachinery, and includes 50% more exercises than the previous edition. It allows readers to easily move from a study of the most successful textbooks on thermodynamics and fluid dynamics to the subject of turbomachinery. The book also builds concepts systematically as progress is made through each chapter so that the user can progress at their own pace. Principles of Turbomachinery, 2nd Edition provides comprehensive coverage of everything readers need to know, including chapters on: thermodynamics, compressible flow, and principles of turbomachinery analysis. The book also looks at steam turbines, axial turbines, axial compressors, centrifugal compressors and pumps, radial inflow turbines, hydraulic turbines, hydraulic transmission of power, and wind turbines. New chapters on droplet laden flows of steam and oblique shocks help make this an incredibly current and well-rounded resource for students and practicing engineers. Includes 50% more exercises than the previous edition Uses MATLAB or GNU/OCTAVE for all the examples and exercises for which computer calculations are needed, including those for steam Allows for a smooth transition from the study of thermodynamics, fluid dynamics, and heat transfer to the subject of turbomachinery for students and professionals Organizes content so that more difficult material is left to the later sections of each chapter, allowing instructors to customize and tailor their courses for their students Principles of Turbomachinery is an excellent book for students and professionals in mechanical, chemical, and aeronautical engineering.
Foreword xv Acknowledgments xvii About the Companion Website xix 1 Introduction 1 1.1 Energy and Fluid Machines 1 1.1.1 Energy conversion of fossil fuels 1 1.1.2 Steam turbines 2 1.1.3 Gas turbines 3 1.1.4 Hydraulic turbines 4 1.1.5 Wind turbines 5 1.1.6 Compressors 5 1.1.7 Pumps and blowers 5 1.1.8 Other uses and issues 6 1.2 Historical Survey 7 1.2.1 Water power 7 1.2.2 Wind turbines 8 1.2.3 Steam turbines 9 1.2.4 Jet propulsion 10 1.2.5 Industrial turbines 11 1.2.6 Pumps and compressors 11 1.2.7 Note on units 12 2 Principles of Thermodynamics and Fluid Flow 15 2.1 Mass Conservation Principle 15 2.2 First Law of Thermodynamics 17 2.3 Second Law of Thermodynamics 19 2.3.1 Tds-equations 19 2.4 Equations of State 20 2.4.1 Properties of steam 21 2.4.2 Ideal gases 27 2.4.3 Air tables and isentropic relations 29 2.4.4 Ideal gas mixtures 32 2.4.5 Incompressibility 36 2.4.6 Stagnation state 37 2.5 Efficiency 37 2.5.1 Efficiency measures 37 2.5.2 Thermodynamic losses 43 2.5.3 Incompressible fluid 45 2.5.4 Compressible flows 46 2.6 Momentum Balance 48 Exercises 56 3 Compressible Flow 63 3.1 Mach Number and The Speed of Sound 63 3.1.1 Mach number relations 65 3.2 Isentropic Flow with Area Change 67 3.2.1 Converging nozzle 71 3.3 Influence of Friction on Flow Through Nozzles 73 3.3.1 Polytropic efficiency 73 3.3.2 Loss coefficients 77 3.3.3 Nozzle efficiency 81 3.3.4 Combined Fanno flow and area change 82 3.4 Supersonic Nozzle 87 3.5 Normal Shocks 90 3.5.1 Rankine-Hugoniot relations 95 3.6 Moving Shocks 98 3.7 Oblique shocks and Expansion Fans 100 3.7.1 Mach waves 100 3.7.2 Oblique shocks 101 3.7.3 Supersonic flow over a rounded concave corner 107 3.7.4 Reflected shocks and shock interactions 108 3.7.5 Mach reflection 110 3.7.6 Detached oblique shocks 110 3.7.7 Prandtl-Meyer theory 112 Exercises 124 4 Gas Dynamics of Wet Steam 131 4.1 Compressible Flow of Wet Steam 132 4.1.1 Clausius-Clapeyron equation 132 4.1.2 Adiabatic exponent 133 4.2 Conservation Equations for Wet Steam 137 4.2.1 Relaxation times 139 4.2.2 Conservation equations in their working form 144 4.2.3 Sound speeds 146 4.3 Relaxation Zones 149 4.3.1 Type I wave 149 4.3.2 Type II wave 154 4.3.3 Type III wave 157 4.3.4 Combined relaxation 157 4.3.5 Flow in a variable area nozzle 159 4.4 Shocks in Wet Steam 161 4.4.1 Evaporation in the flow after the shock 164 4.5 Condensation Shocks 167 4.5.1 Jump conditions across a condensation shock 169 Exercises 174 5 Principles of Turbomachine Analysis 177 5.1 Velocity Triangles 178 5.2 Moment of Momentum Balance 181 5.3 Energy Transfer in Turbomachines 182 5.3.1 Trothalpy and specific work in terms of velocities 186 5.3.2 Degree of reaction 189 5.4 Utilization 191 5.5 Scaling and Similitude 198 5.5.1 Similitude 198 5.5.2 Incompressible flow 199 5.5.3 Shape parameter or specific speed and specific diameter 202 5.5.4 Compressible flow analysis 206 5.6 Performance Characteristics 208 5.6.1 Compressor performance map 208 5.6.2 Turbine performance map 209 Exercises 210 6 Steam Turbines 215 6.1 Introduction 215 6.2 Impulse Turbines 217 6.2.1 Single-stage impulse turbine 217 6.2.2 Pressure compounding 226 6.2.3 Blade shapes 230 6.2.4 Velocity compounding 233 6.3 Stage with Zero Reaction 238 6.4 Loss Coefficients 241 Exercises 243 7 Axial Turbines 247 7.1 Introduction 247 7.2 Turbine Stage Analysis 249 7.3 Flow and Loading Coefficients and Reaction Ratio 253 7.3.1 Fifty percent (50%) stage 258 7.3.2 Zero percent (0%) reaction stage 262 7.3.3 Off-design operation 263 7.3.4 Variable axial velocity 265 7.4 Three-Dimensional Flow and Radial Equilibrium 267 7.4.1 Free vortex flow 269 7.4.2 Fixed blade angle 273 7.4.3 Constant mass flux 273 7.5 Turbine Efficiency and Losses 276 7.5.1 Soderberg loss coefficients 276 7.5.2 Stage efficiency 277 7.5.3 Stagnation pressure losses 279 7.5.4 Performance charts 285 7.5.5 Zweifel correlation 290 7.5.6 Further discussion of losses 291 7.5.7 Ainley-Mathieson correlation 293 7.5.8 Secondary loss 296 7.6 Multistage Turbine 302 7.6.1 Reheat factor in a multistage turbine 302 7.6.2 Polytropic or small-stage efficiency 304 Exercises 305 8 Axial Compressors 311 8.1 Compressor Stage Analysis 312 8.1.1 Stage temperature and pressure rise 313 8.1.2 Analysis of a repeating stage 315 8.2 Design Deflection 321 8.2.1 Compressor performance map 324 8.3 Radial Equilibrium 326 8.3.1 Modified free vortex velocity distribution 327 8.3.2 Velocity distribution with zero-power exponent 330 8.3.3 Velocity distribution with first-power exponent 331 8.4 Diffusion Factor 333 8.4.1 Momentum thickness of a boundary layer 335 8.5 Efficiency and Losses 339 8.5.1 Efficiency 339 8.5.2 Parametric calculations 342 8.6 Cascade Aerodynamics 343 8.6.1 Blade shapes and terms 344 8.6.2 Blade forces 345 8.6.3 Other losses 347 8.6.4 Diffuser performance 348 8.6.5 Flow deviation and incidence 349 8.6.6 Multi-stage compressor 351 8.6.7 Compressibility effects 352 8.6.8 Design of a compressor 353 Exercises 359 9 Centrifugal Compressors and Pumps 363 9.1 Compressor Analysis 364 9.1.1 Slip factor 365 9.1.2 Pressure ratio 367 9.2 Inlet Design 374 9.2.1 Choking of the inducer 379 9.3 Exit Design 381 9.3.1 Performance characteristics 381 9.3.2 Diffusion ratio 384 9.3.3 Blade height 385 9.4 Vaneless Diffuser 387 9.5 Centrifugal Pumps 391 9.5.1 Specific speed and specific diameter 395 9.6 Fans 403 9.7 Cavitation 404 9.8 Diffuser and Volute Design 406 9.8.1 Vaneless diffuser 406 9.8.2 Volute design 407 Exercises 411 10 Radial Inflow Turbines 415 10.1 Turbine Analysis 416 10.2 Efficiency 421 10.3 Specific Speed and Specific Diameter 425 10.4 Stator Flow 431 10.4.1 Loss coefficients for stator flow 436 10.5 Design of the Inlet of a Radial Inflow Turbine 440 10.5.1 Minimum inlet Mach number 441 10.5.2 Blade stagnation Mach number 447 10.5.3 Inlet relative Mach number 449 10.6 Design of the Exit 450 10.6.1 Minimum exit Mach number 450 10.6.2 Radius ratio r3s/r2 453 10.6.3 Blade height-to-radius ratio b2/r2 454 10.6.4 Optimum incidence angle and the number of blades 455 Exercises 460 11 Hydraulic Turbines 463 11.1 Hydroelectric Power Plants 463 11.2 Hydraulic Turbines and their Specific Speed 465 11.3 Pelton Wheel 467 11.4 Francis Turbine 475 11.5 Kaplan Turbine 483 11.6 Cavitation 486 Exercises 488 12 Hydraulic Transmission of Power 491 12.1 Fluid Couplings 491 12.1.1 Fundamental relations 492 12.1.2 Flow rate and hydrodynamic losses 494 12.1.3 Partially filled coupling 496 12.2 Torque Converters 497 12.2.1 Fundamental relations 497 12.2.2 Performance 500 Exercises 504 13 Wind Turbines 507 13.1 Horizontal-Axis Wind Turbine 508 13.2 Momentum Theory of Wind Turbines 509 13.2.1 Axial momentum 509 13.2.2 Ducted wind turbine 514 13.2.3 Wake rotation 516 13.2.4 Irrotational wake 518 13.3 Blade Element Theory 522 13.3.1 Nonrotating wake 522 13.3.2 Wake with rotation 525 13.3.3 Ideal wind turbine 530 13.3.4 Prandtl’s tip correction 532 13.4 Turbomachinery and Future Prospects for Energy 535 Exercises 536 Appendix A: Streamline Curvature and Radial Equilibrium 539 A.1 Streamline Curvature Method 539 A.1.1 Fundamental equations 539 A.1.2 Formal solution 543 Appendix B: Thermodynamic Tables 545 References 559 Index 565
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐