图书简介
The theory, observations, and applications ofgravitational lensingconstitute one ofthe most rapidly growing branches ofextragalactic astrophysics. The deflection of light from very distant sources by intervening masses provides a unique possibility for the investigation of both background sources and lens mass distributions. Gravitational lensing manifestsitselfmost distinctly through multiply imaged QSOs and the formation of highly elongated im ages of distant galaxies (’arcs’) and spectacular ring-like images of extra galactic radio sources. But the effects of gravitational light deflection are not limited to these prominent image configurations; more subtle, since not directly observable, consequences of lensing are the, possibly strong, mag nification of sources, which may permit observation of intrinsically fainter, or more distant, sources than would be visible without these natural tele scopes. Such light deflection can also affect the source counts of QSOs and of other compact extragalactic sources, and can lead to flux variability of sources owing to propagation effects. Trying to summarizethe theory and observationalstatus ofgravitational lensing in a monograph turned out to be a bigger problem than any of the authors anticipated when we started this project at the end of 1987, encour aged by Martin Harwit, who originally approached us. The development in the field has been very rapid during the last four years, both through the ory and through observation, and many sections have been rewritten several times, as the previous versions became out of date.
1. Introduction.- 1.1 Historical remarks.- 1.1.1 Before 1919.- 1.1.2 The period 1919-1937.- 1.1.3 The period 1963-1979.- 1.1.4 Post-1979.- 1.2 Outline of the book.- 1.3 Remarks about notation.- 2. Basic facts and the observational situation.- 2.1 The Schwarzschild lens.- 2.2 The general lens.- 2.3 The magnification factor.- 2.4 Observing gravitational lens systems.- 2.4.1 Expectations for point sources..- 2.4.2 Expectations for extended sources.- 2.5 Known gravitational lens systems.- 2.5.1 Doubles.- 2.5.2 Triples.- 2.5.3 Quadruples.- 2.5.4 Additional candidates.- 2.5.5 Arcs.- 2.5.6 Rings.- 2.5.7 A rapidly growing list of candidates.- 2.5.8 Speculations on other gravitational lens systems.- 2.5.9 Gravitational lenses and cosmology.- 3. Optics in curved spacetime.- 3.1 The vacuum Maxwell equations.- 3.2 Locally approximately plane waves.- 3.3 Fermat’s principle.- 3.4 Geometry of ray bundles.- 3.4.1 Ray systems and their connection vectors.- 3.4.2 Optical scalars and their transport equations.- 3.5 Distances based on light rays. Caustics.- 3.6 Luminosity, flux and intensity.- 4. Derivation of the lens equation.- 4.1 Einstein’s gravitational field equation.- 4.2 Approximate metrics of isolated, slowly moving, non-compact matter distributions.- 4.3 Light deflection by quasistationary, isolated mass distributions.- 4.4 Summary of Friedmann-Lemaitre cosmological models.- 4.5 Light propagation and redshift-distance relations in homogeneous and inhomogeneous model universes.- 4.5.1 Flux conservation and the focusing theorem.- 4.5.2 Redshift-distance relations.- 4.5.3 The Dyer-Roeder equation.- 4.6 The lens mapping in cosmology.- 4.7 Wave optics in lens theory.- 5. Properties of the lens mapping.- 5.1 Basic equations of the lens theory.- 5.2 Magnification and critical curves.- 5.3 Time delay and Fermat’s principle.- 5.4 Two general theorems about gravitational lensing.- 5.4.1 The case of a single lens plane.- 5.4.2 Generalizations.- 5.4.3 Necessary and sufficient conditions for multiple imaging.- 5.5 The topography of time delay (Fermat) surfaces.- 6. Lensing near critical points.- 6.1 The lens mapping near ordinary images.- 6.2 Stable singularities of lens mappings.- 6.2.1 Folds. Rules for truncating Taylor expansions.- 6.2.2 Cusps.- 6.2.3 Whitney’s theorem. Singularities of generic lens maps.- 6.3 Stable singularities of one-parameter families of lens mappings; metamorphoses.- 6.3.1 Umbilics.- 6.3.2 Swallowtails.- 6.3.3 Lips and beak-to-beaks.- 6.3.4 Concluding remarks about singularities.- 6.4 Magnification of extended sources near folds.- 7. Wave optics in gravitational lensing.- 7.1 Preliminaries; magnification of ordinary images.- 7.2 Magnification near isolated caustic points.- 7.3 Magnification near fold catastrophes.- 8. Simple lens models.- 8.1 Axially symmetric lenses.- 8.1.1 General properties.- 8.1.2 The Schwarzschild lens.- 8.1.3 Disks as lenses.- 8.1.4 The singular isothermal sphere.- 8.1.5 A family of lens models for galaxies.- 8.1.6 A uniform ring.- 8.2 Lenses with perturbed symmetry (Quadrupole lenses).- 8.2.1 The perturbed Plummer model.- 8.2.2 The perturbed Schwarzschild lens (’Chang-Refsdallens’).- 8.3 The two point-mass lens.- 8.3.1 Two equal point masses.- 8.3.2 Two point masses with arbitrary mass ratio.- 8.3.3 Two point masses with external shear.- 8.3.4 Generalization to N point masses.- 8.4 Lenses with elliptical symmetry.- 8.4.1 Elliptical isodensity curves.- 8.4.2 Elliptical isopotentials.- 8.4.3 A practical approach to (nearly) elliptical lenses.- 8.5 Marginal lenses.- 8.6 Generic properties of \"elliptical lenses\".- 8.6.1 Evolution of the caustic structure.- 8.6.2 Imaging properties.- 9. Multiple light deflection.- 9.1 The multiple lens-plane theory.- 9.1.1 The lens equation.- 9.1.2 The magnification matrix.- 9.1.3 Particular cases.- 9.2 Time delay and Fermat’s principle.- 9.3 The generalized quadrupole lens.- 10. Numerical methods.- 10.1 Roots of one-dimensional equations.- 10.2 Images of extended sources.- 10.3 Interactive methods for model fitting.- 10.4 Grid search methods.- 10.5 Transport of images.- 10.6 Ray shooting.- 10.7 Constructing lens and source models from resolved images.- 11. Statistical gravitational lensing: General considerations.- 11.1 Cross-sections.- 11.1.1 Multiple image cross-sections.- 11.1.2 Magnification cross-sections.- 11.2 The random star field.- 11.2.1 Probability distribution for the deflection.- 11.2.2 Shear and magnification.- 11.2.3 Inclusion of external shear and smooth matter density.- 11.2.4 Correlated deflection probability.- 11.2.5 Spatial distribution of magnifications.- 11.3 Probabilities in a clumpy universe.- 11.4 Light propagation in inhomogeneous universes.- 11.4.1 Statistics for light rays.- 11.4.2 Statistics over sources.- 11.5 Maximum probabilities.- 12. Statistical gravitational lensing: Applications.- 12.1 Amplification bias and the luminosity function of QSOs.- 12.1.1 Amplification bias: Preliminary discussion.- 12.1.2 QSO source counts and their luminosity function.- 12.2 Statistics of multiply imaged sources.- 12.2.1 Statistics for point-mass lenses.- 12.2.2 Statistics for isothermal spheres.- 12.2.3 Modifications of the lens model: Symmetric lenses.- 12.2.4 Modification of the lens model: Asymmetric lenses.- 12.2.5 Lens surveys.- 12.3 QSO-galaxy associations.- 12.3.1 Observational challenges.- 12.3.2 Mathematical formulation of the lensing problem.- 12.3.3 Maximal overdensity.- 12.3.4 Lens models.- 12.3.5 Relation to observations.- 12.4 Microlensing: Astrophysical discussion.- 12.4.1 Lens-induced variability.- 12.4.2 Microlensing in 2237 + 0305.- 12.4.3 Microlensing and broad emission lines of QSOs.- 12.4.4 Microlensing and the classification of AGNs.- 12.5 The amplification bias: Detailed discussion.- 12.5.1 Theoretical analysis.- 12.5.2 Observational hints of amplification bias.- 12.5.3 QSO-galaxy associations revisited.- 12.6 Distortion of images.- 12.7 Lensing of supernovae.- 12.8 Further applications of statistical lensing.- 12.8.1 Gravitational microlensing by the galactic halo.- 12.8.2 Recurrence of ?-ray bursters.- 12.8.3 Multiple imaging from an ensemble of galaxies, and the ’missing lens’ problem.- 13. Gravitational lenses as astrophysical tools.- 13.1 Estimation of model parameters.- 13.1.1 Invariance transformations.- 13.1.2 Determination of lens mass and Hubble constant.- 13.1.3 Application to the 0957 + 561 system.- 13.2 Arcs in clusters of galaxies.- 13.2.1 Introduction.- 13.2.2 The nearly spherical lens.- 13.2.3 Analysis of the observations; arcs as astronomical tools.- 13.2.4 Statistics of arcs and arclets.- 13.3 Additional applications.- 13.3.1 The size of QSO absorption line systems.- 13.3.2 Scanning of the source by caustics.- 13.3.3 The parallax effect.- 13.3.4 Cosmic strings.- 13.3.5 Upper limits to the mass of some QSOs.- 13.3.6 Gravitational lensing and superluminal motion.- 13.4 Miscellaneous topics.- 13.4.1 Lensing and the microwave background.- 13.4.2 Light deflection in the Solar System.- 13.4.3 Light deflection in strong fields.- References.- Index of Individual Objects.
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐