The Gross-Zagier Formula on Shimura Curves(Annals of Mathematics Studies)

关于志村曲线的格罗斯-乍基亚公式

数论

原   价:
833.75
售   价:
667.00
优惠
平台大促 低至8折优惠
出  版 社
出版时间
2012年12月02日
装      帧
平装
ISBN
9780691155920
复制
页      码
272
开      本
9.10 x 6.10 x 0.50
语      种
英文
综合评分
暂无评分
我 要 买
- +
库存 2 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations. The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof of its coherent analogue: the Waldspurger formula, which relates the periods of integrals and the special values of L-series by means of Weil representations. The Gross-Zagier formula is then reformulated in terms of incoherent Weil representations and Kudla’s generating series. Using Arakelov theory and the modularity of Kudla’s generating series, the proof of the Gross-Zagier formula is reduced to local formulas. The Gross-Zagier Formula on Shimura Curves will be of great use to students wishing to enter this area and to those already working in it.
本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个