The Principles of Deep Learning Theory

深度学习理论的原理:理解神经网络的有效理论方法

统计力学

原   价:
851.25
售   价:
681.00
优惠
平台大促 低至8折优惠
出  版 社
出版时间
2022年05月01日
装      帧
精装
ISBN
9781316519332
复制
页      码
390
开      本
254x178mm
语      种
英文
综合评分
暂无评分
我 要 买
- +
库存 2 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject’s traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning.
本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个