Statistical Applications of Jordan Algebras

数学史

原   价:
552.5
售   价:
442.00
优惠
平台大促 低至8折优惠
作      者
出  版 社
出版时间
1994年08月15日
装      帧
平装
ISBN
9780387943411
复制
页      码
102
语      种
英语
综合评分
暂无评分
我 要 买
- +
库存 83 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
This monograph brings together my work in mathematical statistics as I have viewed it through the lens of Jordan algebras. Three technical domains are to be seen: applications to random quadratic forms (sums of squares), the investigation of algebraic simplifications of maxi­ mum likelihood estimation of patterned covariance matrices, and a more wide­ open mathematical exploration of the algebraic arena from which I have drawn the results used in the statistical problems just mentioned. Chapters 1, 2, and 4 present the statistical outcomes I have developed using the algebraic results that appear, for the most part, in Chapter 3. As a less daunting, yet quite efficient, point of entry into this material, one avoiding most of the abstract algebraic issues, the reader may use the first half of Chapter 4. Here I present a streamlined, but still fully rigorous, definition of a Jordan algebra (as it is used in that chapter) and its essential properties. These facts are then immediately applied to simplifying the M:-step of the EM algorithm for multivariate normal covariance matrix estimation, in the presence of linear constraints, and data missing completely at random. The results presented essentially resolve a practical statistical quest begun by Rubin and Szatrowski [1982], and continued, sometimes implicitly, by many others. After this, one could then return to Chapters 1 and 2 to see how I have attempted to generalize the work of Cochran, Rao, Mitra, and others, on important and useful properties of sums of squares.
馆藏图书馆
Princeton University Library
本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个