图书简介
This book is a beginner-friendly guide to artificial intelligence (AI), ideal for those with no technical background. It introduces AI, machine learning, and deep learning basics, focusing on no-code methods for easy understanding.The book also covers data science, data mining, and big data processing, maintaining a no-code approach throughout. Practical applications are explored using no-code platforms like Microsoft Azure Machine Learning and AWS SageMaker. Readers are guided through step-by-step instructions and real-data examples to apply learning algorithms without coding. Additionally, it includes the integration of business intelligence tools like Power BI and AWS QuickSight into machine learning projects.This guide bridges the gap between AI theory and practice, making it a valuable resource for beginners in the field.Key Features: oAccessible to Beginners: Specifically designed for individuals new to information technology (IT) and artificial intelligence (AI), making complex concepts understandable without requiring prior programming knowledgeoBroad Audience Appeal: Appeals to a wide range of readers, from those interested in the mathematical foundations of AI to seasoned engineers looking for alternatives to open-source solutionsoStep-by-Step Tutorials: Contains detailed, easy-to-follow tutorials on Microsoft Azure Machine Learning, allowing readers to start from scratch and build functional machine learning modelsoComprehensive Coverage: Not only focuses on Azure Machine Learning but also introduces readers to AWS SageMaker, providing a comparative insight into two of the leading cloud-based machine learning platformsoIntegration with Data Analytics Tools: Explores the use of Power BI and AWS QuickSight for data visualization, highlighting how these tools can enhance machine learning projects by making results actionable and insightfuloReal-World Applications: Features practical projects and case studies using public and medical datasets, demonstrating the real-world applicability of the tools and techniques discussedoAlternative to Open Source: Addresses the challenges of using open-source software for AI and machine learning, presenting Azure Machine Learning and AWS SageMaker as viable, user-friendly alternativesoFuture-Oriented Discussion: Speculates on the future developments in AI platforms, preparing readers for upcoming trends and technologies in the field of AI and machine learningoResource Guide for Continued Learning: Offers an extensive list of resources, including online courses, forums, and documentation, to assist readers in furthering their understanding and skills after finishing the bookoEmpowerment Through Knowledge: Empowers readers by equipping them with the knowledge and tools needed to apply artificial intelligence in various domains, regardless of their IT background
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐