Matrix Groups

原   价:
797.5
售   价:
638.00
优惠
平台大促 低至8折优惠
发货周期:预计1-3天发货!
作      者
出  版 社
出版时间
1984年10月31日
装      帧
平装
ISBN
9780387960746
复制
页      码
228
语      种
英文
版      次
2nd Ed.
综合评分
暂无评分
我 要 买
- +
库存 1 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
These notes were developed from a course taught at Rice Univ- sity in the spring of 1976 and again at the University of Hawaii in the spring of 1977. It is assumed that the students know some linear algebra and a little about differentiation of vector-valued functions. The idea is to introduce students to some of the concepts of Lie group theory-- all done at the concrete level of matrix groups. As much as we could, we motivated developments as a means of deciding when two matrix groups (with different definitions) are isomorphic. In Chapter I ’group’ is defined and examples are given; ho- morphism and isomorphism are defined. For a field k denotes the algebra of n x n matrices over k We recall that A E Mn(k) has an inverse if and only if det A ~ 0 , and define the general linear group GL(n,k) We construct the skew-field lli of to operate linearly on llin quaternions and note that for A E Mn(lli) we must operate on the right (since we mUltiply a vector by a scalar n on the left). So we use row vectors for R , en, llin and write xA for the row vector obtained by matrix multiplication. We get a ~omplex-valued determinant function on Mn (11) such that det A ~ 0 guarantees that A has an inverse.
馆藏图书馆
Princeton University Library
本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个