图书简介
This book provides an exciting history of the discovery of Ramsey Theory, and contains new research along with rare photographs of the mathematicians who developed this theory, including Paul Erdoes, B.L. van der Waerden, and Henry Baudet.
Epigraph: To Paint a Bird.- Foreword for the New Mathematical Coloring Book by Peter D. Johnson, Jr.- Foreword for the New Mathematical Coloring Book by Geoffrey Exoo.- Foreword for the New Mathematical Coloring Book by Branko Grunbaum. Foreword for The Mathematical Coloring Book by Peter D. Johnson, Jr., Foreword for The Mathematical Coloring Book by Cecil Rousseau.- Acknowledgements.- Greetings to the Reader 2023.- Greetings to the Reader 2009.- I. Merry-Go-Round.-1. A Story of Colored Polygons and Arithmetic Progressions.- II. Colored Plane.- 2. Chromatic Number of the Plane: The Problem.- 3. Chromatic Number of the Plane: An Historical Essay.- 4. Polychromatic Number of the Plane and Results Near the Lower Bound.- 5. De Bruijn-Erdos Reduction to Finite Sets and Results Near the Lower Bound.- 6. Polychromatic Number of the Plane and Results Near the Upper Bound.- 7. Continuum of 6-Colorings of the Plane.- 8. Chromatic Number of the Plane in Special Circumstances.- 9. Measurable Chromatic Number of the Plane.- 10. Coloring in Space.- 11. Rational Coloring.- III. Coloring Graphs.- 12. Chromatic Number of a Graph.- 13. Dimension of a Graph.- 14. Embedding 4-Chromatic Graphs in the Plane.- 15. Embedding World Series.- 16. Exoo-Ismailescu: The Final Word on Problem 15.4.- 17. Edge Chromatic Number of a Graph.- 18. The Carsten Thomassen 7-Color Theorem.- IV.Coloring Maps.- 19. How the Four-Color Conjecture Was Born.- 20. Victorian Comedy of Errors and Colorful Progress.- 21. Kempe-Heawood’s Five-Color Theorem and Tait’s Equivalence.- 22. The Four-Color Theorem.- 23. The Great Debate.- 24. How Does One Color Infinite Maps? A Bagatelle.- 25. Chromatic Number of the Plane Meets Map Coloring: The Townsend-Woodall 5-Color Theorem.- V. Colored Graphs.- 26. Paul Erdos.- 27. The De Bruijn-Erdos Theorem and Its History.- 28. Nicolaas Govert de Bruijn.- 29. Edge Colored Graphs: Ramsey and Folkman Numbers.- VI. The Ramsey Principles.- 30. From Pigeonhole Principle to Ramsey Principle.- 31. The Happy End Problem.- 32. The Man behind the Theory: Frank Plumpton Ramsey.- VII. Colored Integers: Ramsey Theory Before Ramsey and Its AfterMath.- 33. Ramsey Theory Before Ramsey: Hilbert’s Theorem.- 34. Ramsey Theory Before Ramsey: Schur’s Coloring Solution of a Colored Problem and Its Generalizations.- 35. Ramsey Theory Before Ramsey: Van der Waerden Tells the Story of Creation.- 36. Whose Conjecture Did Van der Waerden Prove? Two Lives Between Two Wars: Issai Schur and Pierre Joseph Henry Baudet.- 38. Monochromatic Arithmetic Progressions or Life After Van der Waerden.- 39. In Search of Van der Waerden: The Early Years.- 40. In Search of Van der Waerden: The Nazi Leipzig, 1933-1945.- 41. In Search of Van der Waerden: Amsterdam, Year 1945.- 42. In Search of Van der Waerden: The Unsettling Years, 1946-1951.- 43. How the Monochromatic AP Theorem Became Classic: Khinchin and Lukomskaya.- VIII. Colored Polygons: Euclidean Ramsey Theory.- 44. Monochromatic Polygons in a 2-Colored Plane.- 45. 3-Colored Plane, 2-Colored Space, and Ramsey Sets.- 46. The Gallai Theorem.- IX. Colored Integers in Service of the Chromatic Number of the Plane: How O’Donnell Unified Ramsey Theory and No One Noticed.- 47. O’Donnell Earns His Doctorate.- 48. Application of Baudet-Schur-Van der Waerden.- 48. Application of Bergelson-Leibman’s and Mordell-Faltings’ Theorems.- 50. Solution of an Erdos Problem: The O’Donnell Theorem.- X. Ask What Your Computer Can Do for You.- 51. Aubrey D.N.J. de Grey’s Breakthrough.- 52. De Grey’s Construction.- 53. Marienus Johannes Hendrikus ’Marijn’ Heule.- 54. Can We Reach Chromatic 5 Without Mosers Spindles?.- 55. Triangle-Free 5-Chromatic Unit Distance Graphs.- 56. Jaan Parts’ Current World Record.- XI. What About Chromatic 6?.- 57. A Stroke of Brilliance: Matthew Huddleston’s Proof.- 58. Geoffrey Exoo and Dan Ismailescu or 2 Men from 2 Forbidden Distances.- 59. Jaan Parts on Two-Distance 6-Coloring.- 60. Forbidden Odds, Binaries, and Factorials.- 61. 7-and 8-Chromatic Two-Distance Graphs.- XII. Predicting the Future.- 62. What If We Had No Choice?.- 63. AfterMath and the Shelah-Soifer Class of Graphs.- 64. A Glimpse into the Future: Chromatic Number of the Plane, Theorems and Conjectures.- XIII. Imagining the Real, Realizing the Imaginary.- 65. What Do the Founding Set Theorists Think About the Foundations?.- 66. So, What Does It All Mean?.- 67. Imagining the Real or Realizing the Imaginary: Platonism versus Imaginism.- XIV. Farewell to the Reader.- 68. Two Celebrated Problems.- Bibliography.- Name Index.- Subject Index.- Index of Notations.
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐