图书简介
This volume set constitutes the refereed proceedings of the 16th International Conference on Knowledge Science, Engineering and Management, KSEM 2023, which was held in Guangzhou, China, during August 16–18, 2023. The 114 full papers and 30 short papers included in this book were carefully reviewed and selected from 395 submissions. They were organized in topical sections as follows: knowledge science with learning and AI; knowledge engineering research and applications; knowledge management systems; and emerging technologies for knowledge science, engineering and management.
Knowledge Management Systems.- Explainable Multi-type Item Recommendation System based on Knowledge Graph.- A 2D Entity Pair Tagging Scheme for Relation Triplet Extraction.- MVARN: Multi-view attention relation network for figure question answering.- MAGNN-GC: Multi-Head Attentive Graph Neural Networks with Global Context for Session-based Recommendation.- Chinese Relation Extraction with Bi-directional Context-based Lattice LSTM.- MA-TGNN: Multiple Aggregators Graph-Based Model for Text Classification.- Multi-Display Graph Attention Network for Text Classification.- Debiased Contrastive Loss for Collaborative Filtering.- ParaSum: Contrastive Paraphrasing for Low-resource Extractive Text Summarization.- Degree-aware embedding and Interactive feature fusion-based Graph Convolution Collaborative Filtering.- Hypergraph Enhanced Contrastive Learning for News Recommendation.- Reinforcement Learning-Based Recommendation with User Reviews on Knowledge Graphs.- A Session Recommendation Model based on Heterogeneous Graph Neural Network.- Dialogue State Tracking with a Dialogue-aware Slot-Level Schema Graph Approach.- FedDroidADP: An Adaptive Privacy-Preserving Framework for Federated-Learning-based Android Malware Classification System.- Multi-level and Multi-interest User Interest Modeling for News Recommendation.- CoMeta: Enhancing Meta Embeddings with Collaborative Information in Cold-start Problem of Recommendation.- A Graph Neural Network for Cross-Domain Recommendation Based on Transfer and Inter-Domain Contrastive Learning.- A Hypergraph Augmented and Information Supplementary Network for Session-based Recommendation.- Candidate-aware Attention Enhanced Graph Neural Network for News Recommendation.- Heavy Weighting for Potential Important Clauses.- Knowledge-Aware Two-Stream Decoding for Outline-Conditioned Chinese Story Generation.- Multi-Path based Self-Adaptive Cross-Lingual Summarization.- Temporal Repetition Counting Based on Multi-Stride Collaboration.- Multi-layer Attention Social Recommendation System based on Deep Reinforcement Learning.- SPOAHA: Spark program optimizer based on Artificial Hummingbird Algorithm.- TGKT-based Personalized Learning Path Recommendation with Reinforcement Learning.- Fusion High-Order information with Nonnegative Matrix Factorization Based Community Infomax for Community Detection.- Multi-task learning based skin segmentation.- User Feedback-based Counterfactual Data Augmentation for Sequential Recommendation.- Citation Recommendation Based on Knowledge Graph and Multi-task Learning.- A Pairing Enhancement Approach for Aspect Sentiment Triplet Extraction.- The Minimal Negated Model Semantics of Assumable Logic Programs.- MT-BICN: Multi-task Balanced Information Cascade Network for Recommendation.
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐