Parameter Estimation in Stochastic Volatility Models

随机波动模型的参数估计

概率论

原   价:
1548.75
售   价:
1239.00
优惠
平台大促 低至8折优惠
发货周期:国外库房发货,通常付款后3-5周到货!
作      者
出版时间
2023年08月07日
装      帧
平装
ISBN
9783031038631
复制
页      码
613
开      本
9.21 x 6.14 x 1.30
语      种
英文
版      次
2022
综合评分
暂无评分
我 要 买
- +
库存 30 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.
本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个