图书简介
This book bridges the gap between data scientists and clinicians by introducing all relevant aspects of machine learning in an accessible way, and will certainly foster new and serendipitous applications of machine learning in the clinical neurosciences. Building from the ground up by communicating the foundational knowledge and intuitions first before progressing to more advanced and specific topics, the book is well-suited even for clinicians without prior machine learning experience.Authored by a wide array of experienced global machine learning groups, the book is aimed at clinicians who are interested in mastering the basics of machine learning and who wish to get started with their own machine learning research. The volume is structured in two major parts: The first uniquely introduces all major concepts in clinical machine learning from the ground up, and includes step-by-step instructions on how to correctly develop and validate clinical prediction models. It also includes methodological and conceptual foundations of other applications of machine learning in clinical neuroscience, such as applications of machine learning to neuroimaging, natural language processing, and time series analysis. The second part provides an overview of some state-of-the-art applications of these methodologies.The Machine Intelligence in Clinical Neuroscience (MICN) Laboratory at the Department of Neurosurgery of the University Hospital Zurich studies clinical applications of machine intelligence to improve patient care in clinical neuroscience. The group focuses on diagnostic, prognostic and predictive analytics that aid in decision-making by increasing objectivity and transparency to patients. Other major interests of our group members are in medical imaging, and intraoperative applications of machine vision.
Preface.- Foundations of machine learning-based clinical prediction modeling - Part I: Introduction and general principles.- Foundations of machine learning-based clinical prediction modeling - Part II: Generalization and Overfitting.- Foundations of machine learning-based clinical prediction modeling - Part III: Evaluation and other points of significance.- Foundations of machine learning-based clinical prediction modeling - Part IV: A practical approach to binary classification problems.- Foundations of machine learning-based clinical prediction modeling - Part V: A practical approach to regression problems.- Supervised and unsupervised learning / clustering.- Introduction to Bayesian Modeling.- Introduction to Deep Learning.- Overview of algorithms for machine-learning based clinical prediction modelling.- Foundations of feature selection in clinical prediction modelling.- Dimensionality reduction: Foundations and applications in clinical neuroscience.- Machine learning-based survival modeling: Foundations and Applications.- Making clinical prediction models available: A brief introduction.- Machine Learning-based Clustering Analysis: Foundational Concepts, Methods, and Applications.- Introduction to Machine Learning in Neuroimaging.- Overview of machine learning algorithms in imaging.- Foundations of classification modeling based on neuroimaging.- Foundations of lesion-symptom mapping using machine learning.- Foundations of Machine Learning-Based Segmentation in Cranial Imaging.- Foundations of lesion detection using machine learning in clinical neuroimaging.- Foundations of multiparametric brain tumor imaging characterization.- Radiomics in clinical neuroscience – Overview.- Radiomic feature extraction: Methodological Foundations.- Complexity and interpretability in machine vision.- Foundations of intraoperative anatomical recognition using machine vision.- Machine Vision Foundations.- Natural Language Processing: Foundations and Applications in Clinical Neuroscience.- Foundations of Time Series Analysis.- Overview of algorithms for natural language processing and time series analysis.- History of machine learning in neurosurgery.- The AI doctor - considerations for AI-based medicine.- Ethics of Machine Learning-Based Predictive Analytics.- Predictive analytics in clinical practice: Pro and contra.- Review of machine vision applications in neuroophtalmology.- Prediction Model.- Prediction Model.- Prediction Model.- Topical Review of machine learning in intracranial aneurysm surgery.- Review of applications of machine learning in neuroimaging.- Prediction Model.- An overview of machine learning applications in the Neurointensive Care Unit.- Prediction Model.- Review of natural language processing in the clinical neurosciences.- Review of big data applications in the clinical neurosciences.- Radiomic features associated with extent of resection in glioma surgery.
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐