图书简介
The complexity of large-scale data sets ("Big Data") has stimulated the development of advanced computational methods for analyzing them. There are two different kinds of methods to aid this. The model-based method uses probability models and likelihood and Bayesian theory, while the model-free method does not require a probability model, likelihood or Bayesian theory. These two approaches are based on different philosophical principles of probability theory, espoused by the famous statisticians Ronald Fisher and Jerzy Neyman
Statistical Modelling and Inference covers simple experimental and survey designs, and probability models up to and including generalised linear (regression) models and some extensions of these, including finite mixtures. A wide range of examples from different application fields are also discussed and analyzed. No special software is used, beyond that needed for maximum likelihood analysis of generalised linear models. Students are expected to have a basic mathematical background of algebra, coordinate geometry and calculus.
FeaturesProbability models are developed from the shape of the sample empirical cumulative distribution function, (cdf) or a transformation of it.Bounds for the value of the population cumulative distribution function are obtained from the Beta distribution at each point of the empirical cdf.Bayes’s theorem is developed from the properties of the screening test for a rare condition.The multinomial distribution provides an always-true model for any randomly sampled data.The model-free bootstrap method for finding the precision of a sample estimate has a model-based parallel - the Bayesian bootstrap - based on the always-true multinomial distribution.The Bayesian posterior distributions of model parameters can be obtained from the maximum likel
Preface. 1.1. What is Statistical Modelling? 1.2. What is Statistical Analysis? 1.3. What is Statistical Inference? 1.4. Why this book? 1.5. Why the focus on the Bayesian approach? 1.6. Coverage of this book. 1.7. Recent changes in technology. 1.8. Aims of the course. 2. What is (or are) Big Data? 3. Data and research studies. 3.1. Lifetimes of radio transceivers. 3.2. Clustering of V1 missile hits in South London. 3.3. Court case on vaccination risk. 3.4. Clinical trial of Depepsen for the treatment of duodenal ulcers. 3.5. Effectiveness of treatments for respiratory distress in newborn babies. 3.6. Vitamin K. 3.7. Species counts. 3.8. Toxicology in small animal experiments. 3.9. Incidence of Down’s syndrome in four regions. 3.10. Fish species in lakes. 3.11. Absence from school. 3.12. Hostility in husbands of suicide attempters. 3.13. Tolerance of racial intermarriage. 3.14. Hospital bed use. 3.15. Dugong growth. 3.16. Simulated motorcycle collision. 3.17. Global warming. 3.18. Social group membership. 4. The StatLab data base. 4.1. Types of variables. 4.2. StatLab population questions. 5. Sample surveys - should we believe what we read? 5.1. Women and Love. 5.2. Would you have children? 5.3. Representative sampling. 5.4. Bias in the Newsday sample. 5.5. Bias in the Women and Love sample. 6. Probability. 6.1. Relative frequency. 6.2. Degree of belief. 6.3. StatLab dice sampling. 6.4. Computer sampling. 6.5. Probability for sampling. 6.6. Probability axioms. 6.7. Screening tests and Bayes’s theorem. 6.8. The misuse of probability in the Sally Clark case. 6.9. Random variables and their probability distributions. 6.10. Sums of independent random variables. 7. Statistical inference I - discrete distributions. 7.1. Evidence-based policy. 7.2. The basis of statistical inference. 7.3. The survey sampling approach. 7.4. Model-based inference theories. 7.5. The likelihood function. 7.6. Binomial distribution. 7.7. Frequentist theory. 7.8. Bayesian theory. 7.9. Inferences from posterior sampling. 7.10. Sample design. 7.11. Parameter transformations. 7.12. The Poisson distribution. 7.13. Categorical variables.7.14. Maximum likelihood. 7.15. Bayesian analysis. 8. Comparison of binomials: the Randomised Clinical Trial. 8.1. Definition. 8.2. Example - RCT of Depepsen for the treatment of duodenal ulcers. 8.3. Monte Carlo simulation. 8.4. RCT continued. 8.5. Bayesian hypothesis testing/model comparison. 8.6. Other measures of treatment difference. 8.7. The ECMO trials. 9. Data visualisation. 9.1. The histogram. 9.2. The empirical mass and cumulative distribution functions. 9.3. Probability models for continuous variables. 10. Statistical Inference II - the continuous exponential, Gaussian and uniform distributions. 10.1. The exponential distribution. 10.2. The exponential likelihood. 10.3. Frequentist theory. 10.4. Bayesian theory. 10.5. The Gaussian distribution. 10.6. The Gaussian likelihood function. 10.7. Frequentist inference. 10.8. Bayesian inference. 10.9. Hypothesis testing. 10.10. Frequentist hypothesis testing. 10.11. Bayesian hypothesis testing. 10.12. Pivotal functions. 10.13. Conjugate priors. 10.14. The uniform distribution. 11. Statistical Inference III - two-parameter continuous distributions. 11.1. The Gaussian distribution. 11.2. Frequentist analysis. 11.3. Bayesian analysis. 11.4. The lognormal distribution. 11.5. The Weibull distribution. 11.6. The gamma distribution. 11.7. The gamma likelihood. 12. Model assessment. 12.1. Gaussian model assessment. 12.2. Lognormal model assessment. 12.3. Exponential model assessment. 12.4. Weibull model assessment. 12.5. Gamma model assessment. 13. The multinomial distribution. 13.1. The multinomial likelihood. 13.2. Frequentist analysis. 13.3. Bayesian analysis. 13.4. Criticisms of the Haldane prior. 13.5. Inference for multinomial quantiles. 13.6. Dirichlet posterior weighting. 13.7. The frequentist bootstrap. 13.8. Stratified sampling and weighting. 14. Model comparison and model averaging. 14.4. The deviance. 14.5. Asymptotic distribution of the deviance. 14.6. Nested models. 14.7. Model choice and model averaging. 15. Gaussian linear regression models. 15.1. Simple linear regression. 15.2. Model assessment through residual examination. 15.3. Likelihood for the simple linear regression model. 15.4. Maximum likelihood. 15.5. Bayesian and frequentist inferences. 15.6. Model-robust analysis. 15.7. Correlation and prediction. 15.8. Probability model assessment. 15.9. "Dummy variable" regression. 15.10. Two-variable models. 15.11. Model assumptions. 15.12. The p-variable linear model. 15.13. The Gaussian multiple regression likelihood. 15.14. Interactions. 15.15. Ridge regression, the Lasso and the "elastic net". 15.16. Modelling boy birthweights. 15.17. Modelling girl intelligence at age 10 and family income 15.18. Modelling of the hostility data. 15.19. Principal component regression. 16. Incomplete data and their analysis with the EM and DA algorithms. 16.1. The general incomplete data model. 16.2. The EM algorithm. 16.3. Missingness. 16.4. Lost data. 16.5. Censoring in the exponential distribution. 16.6. Randomly missing Gaussian observations. 16.7. Missing responses and/or covariates in simple and multiple regression. 16.8. Mixture distributions. 16.9. Bayesian analysis and the Data Augmentation algorithm. 17. Generalised linear models (GLMs). 17.1. The exponential family. 17.2. Maximum likelihood 17.3 The GLM algorithm. 17.4. Bayesian package development. 17.5. Bayesian analysis from ML. 17.6. Binary response models. 17.7. The menarche data. 17.8. Poisson regression - fish species frequency. 17.9. Gamma regression. 18. Extensions of GLMs. 18.1. Double GLMs. 18.2. Maximum likelihood. 18.3. Bayesian analysis. 18.4. Segmented or broken-stick regressions. 18.5. Heterogeneous regressions. 18.6. Highly non-linear functions. 18.7. Neural networks. 18.8. Social networks and social group membership. 18.9. The motorcycle data. 19. Appendix 1 - length-biased sampling. 20. Appendix 2 - Two-component Gaussian mixture. 21. Appendix 3 - StatLab Variables. 22. Appendix 4 - a short history of statistics from 1890.
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐