Spatial and Material Vistas on Non-Linear Continuum Mechanics

非线性连续介质力学的空间与材料视图:耗散一致的方法

材料检测与分析技术

原   价:
1767.5
售   价:
1414.00
优惠
平台大促 低至8折优惠
发货周期:通常付款后3-5周到货!
作      者
出  版 社
出版时间
2021年12月14日
装      帧
精装
ISBN
9783030890698
复制
页      码
472
开      本
0 x 0 x 0 cm
语      种
英文
综合评分
暂无评分
我 要 买
- +
库存 30 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
This book contains thirteen chapters. After the introduction in Chapter 1, Chapter 2 recalls the pertinent spatial and material continuum kinematics in bulk volumes. Chapter 3 reviews the corresponding continuum kinematics on dimensionally reduced smooth manifolds. Chapter 4 revisits the relevant continuum kinematics at singular sets elaborating on the jumps in the non-linear deformation maps and their associated tangent, cotangent and measure maps. Chapter 5 represents the formulation of generic balances for generic volume extensive quantities. Chapter 6 applies the formats of the generic balances to the spatial and material tangent, cotangent and measure maps to formulate kinematical ’balances’. Chapter 7 details the generic balances for the case of mechanical balances of mass, spatial momentum and its vector moment, respectively. Chapter 8 explores the consequences of the mechanical balances by elaborating on local and global formats of the balance of kinetic energy and the balance of material momentum. Chapter 9 capitalises on the referential setting when introducing the notions of spatial and material virtual displacements and discussing the accompanying spatial and material virtual work principles. Chapter 10 expands on the related variational setting in terms of extended Hamilton and Dirichlet principles for conservative elasto-dynamic and elasto-static cases. Chapter 11 specifies the generic balances for the case of thermo-dynamical balances of energy and entropy. Chapter 12 exploits the consequences of the thermo-dynamical balances and the resulting formats of the dissipation power inequalities. Chapter 13 sketches the consequences for computational mechanics by outlining the material force method based on finite element discretisation of the material virtual work principle and highlights its applicability to geometrically non-linear fracture mechanics by some computational examples.
本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个