Preface Introduction to modelling 1.1 WHAT IS MODELLING? 1.1.1 What are models? 1.2 WHYBUILD MODELS? 1.2.1 Why model biological systems? 1.2.2 Why systems biology? 1.3 CHALLENGES IN MODELLING BIOLOGICAL SYSTEMS 1.4 THE PRACTICE OF MODELLING 1.4.1 Scope of the model 1.4.2 Making assumptions 1.4.3 Modelling paradigms 1.4.4 Building the model 1.4.5 Model analysis, debugging and (in)validation 1.4.6 Simulating the model 1.5 EXAMPLES OF MODELS 1.5.1 Lotka-Volterra predator-prey model 1.5.2 SIR model: a classic example 1.6 TROUBLESHOOTING 1.6.1 Clarity of scope and objectives 1.6.2 The breakdown of assumptions 1.6.3 Ismy model fit for purpose? 1.6.4 Handling uncertainties EXERCISES REFERENCES FURTHER READING Introduction to graph theory 2.1 BASICS 2.1.1 History of graph theory 2.1.2 Examples of graphs 2.2 WHYGRAPHS? 2.3 TYPES OF GRAPHS 2.3.1 Simple vs. non-simple graphs 2.3.2 Directed vs. undirected graphs 2.3.3 Weighted vs. unweighted graphs 2.3.4 Other graph types 2.3.5 Hypergraphs 2.4 COMPUTATIONAL REPRESENTATIONS OF GRAPHS 2.4.1 Data structures 2.4.2 Adjacency matrix 2.4.3 The laplacian matrix 2.5 GRAPH REPRESENTATIONS OF BIOLOGICAL NETWORKS 2.5.1 Networks of protein interactions and functional associations 2.5.2 Signalling networks 2.5.3 Protein structure networks 2.5.4 Gene regulatory networks 2.5.5 Metabolic networks 2.6 COMMONCHALLENGES&TROUBLESHOOTING 2.6.1 Choosing a representation 2.6.2 Loading and creating graphs 2.7 SOFTWARE TOOLS EXERCISES REFERENCES FURTHER READING Structure of networks 3.1 NETWORK PARAMETERS 3.1.1 Fundamental parameters 3.1.2 Measures of centrality 3.1.3 Mixing patterns: assortativity 3.2 CANONICAL NETWORK MODELS 3.2.1 Erdos-Renyi (ER) network model 3.2.2 Small-world networks 3.2.3 Scale-free networks 3.2.4 Other models of network generation 3.3 COMMUNITY DETECTION 3.3.1 Modularity maximisation 3.3.2 Similarity-based clustering 3.3.3 Girvan-Newman algorithm 3.3.4 Other methods 3.3.5 Community detection in biological networks 3.4 NETWORKMOTIFS 3.4.1 Randomising networks 3.5 PERTURBATIONS TO NETWORKS 3.5.1 Quantifying efects of perturbation 3.5.2 Network structure and attack strategies 3.6 TROUBLESHOOTING 3.6.1 Is your network really scale-free? 3.7 SOFTWARE TOOLS EXERCISES REFERENCES FURTHER READING Applications of network biology 4.1 THE CENTRALITY-LETHALITY HYPOTHESIS 4.1.1 Predicting essential genes fromnetworks 4.2 NETWORKS AND MODULES IN DISEASE 4.2.1 Disease networks 4.2.2 Identification of disease modules 4.2.3 Edgetic perturbation models 4.3 DIFFERENTIAL NETWORK ANALYSIS 4.4 DISEASE SPREADING ON NETWORKS 4.4.1 Percolation-based models 4.4.2 Agent-based simulations 4.5 MOLECULAR GRAPHS AND THEIR APPLICATIONS 4.5.1 Retrosynthesis 4.6 PROTEIN STRUCTURE, ENERGY & CONFORMATIONAL NETWORKS 4.6.1 Protein folding pathways 4.7 LINK PREDICTION EXERCISES REFERENCES FURTHER READING Introduction to dynamic modelling 5.1 CONSTRUCTING DYNAMIC MODELS 5.1.1 Modelling a generic biochemical system 5.2 MASS-ACTION KINETIC MODELS 5.3 MODELLING ENZYME KINETICS 5.3.1 The Michaelis-Menten model 5.3.2 Extending the Michaelis-Menten model 5.3.3 Limitations of Michaelis-Menten models 5.3.4 Co-operativity: Hill kinetics 5.3.5 An illustrative example: a three-node oscillator 5.4 GENERALISED RATE EQUATIONS 5.4.1 Biochemical systems theory 5.5 SOLVING ODES 5.6 TROUBLESHOOTING 5.6.1 Handing stif equations 5.6.2 Handling uncertainty 5.7 SOFTWARE TOOLS EXERCISES REFERENCES FURTHER READING Parameter estimation 6.1 DATA-DRIVEN MECHANISTIC MODELLING: AN OVERVIEW 6.1.1 Pre-processing the data 6.1.2 Model identification 6.2 SETTING UP AN OPTIMISATION PROBLEM 6.2.1 Linear regression 6.2.2 Least squares 6.2.3 Maximumlikelihood estimation 6.3 ALGORITHMS FOR OPTIMISATION 6.3.1 Desiderata 6.3.2 Gradient-based methods 6.3.3 Direct search methods 6.3.4 Evolutionary algorithms 6.4 POST-REGRESSION DIAGNOSTICS 6.4.1 Model selection 6.4.2 Sensitivity and robustness of biological models 6.5 TROUBLESHOOTING 6.5.1 Regularisation 6.5.2 Sloppiness 6.5.3 Choosing a search algorithm 6.5.4 Model reduction 6.5.5 The curse of dimensionality 6.6 SOFTWARE TOOLS EXERCISES REFERENCES FURTHER READING Discrete dynamic models: Boolean networks 7.1 INTRODUCTION 7.2 BOOLEAN NETWORKS: TRANSFER FUNCTIONS 7.2.1 Characterising Boolean network dynamics 7.2.2 Synchronous vs. asynchronous updates 7.3 OTHER PARADIGMS 7.3.1 Probabilistic Boolean networks 7.3.2 Logical interaction hypergraphs 7.3.3 Generalised logical networks 7.3.4 Petri nets 7.4 APPLICATIONS 7.5 TROUBLESHOOTING 7.6 SOFTWARE TOOLS EXERCISES REFERENCES FURTHER READING Introduction to constraint-based modelling 8.1 WHAT ARE CONSTRAINTS? 8.1.1 Types of constraints 8.1.2 Mathematical representation of constraints 8.1.3 Why are constraints useful? 8.2 THE STOICHIOMETRICMATRIX 8.3 STEADY-STATEMASSBALANCE:FLUXBALANCEANALYSIS (FBA) 8.4 THE OBJECTIVE FUNCTION 8.4.1 The biomass objective function 8.5 OPTIMISATION TO COMPUTE FLUX DISTRIBUTION 8.6 AN ILLUSTRATION 8.7 FLUX VARIABILITY ANALYSIS (FVA) 8.8 UNDERSTANDING FBA 8.8.1 Blocked reactions and dead-end metabolites 8.8.2 Gaps in metabolic networks 8.8.3 Multiple solutions 8.8.4 Loops 8.8.5 Parsimonious FBA (pFBA) 8.8.6 ATP maintenance fluxes 8.9 TROUBLESHOOTING 8.9.1 Zero growth rate 8.9.2 Objective values vs. flux values 8.10 SOFTWARE TOOLS EXERCISES REFERENCES FURTHER READING Extending constraint-based approaches 9.1 MINIMISATION OF METABOLIC ADJUSTMENT (MOMA) 9.1.1 Fitting experimentally measured fluxes 9.2 REGULATORY ON-OFF MINIMISATION (ROOM) 9.2.1 ROOMvs.MoMA 9.3 BI-LEVEL OPTIMISATIONS 9.3.1 OptKnock 9.4 INTEGRATING REGULATORY INFORMATION 9.4.1 Embedding regulatory logic: regulatory FBA (rFBA) 9.4.2 Informing metabolic models with omic data 9.4.3 Tissue-specific models 9.5 COMPARTMENTALISED MODELS 9.6 DYNAMIC FLUX BALANCE ANALYSIS (dFBA) 9.7 13C-MFA 9.8 ELEMENTARY FLUX MODES AND EXTREME PATHWAYS 9.8.1 Computing EFMs and EPs 9.8.2 Applications EXERCISES REFERENCES FURTHER READING Perturbations to metabolic networks 10.1 KNOCK-OUTS 10.1.1 Gene deletions vs. reaction deletions 10.2 SYNTHETIC LETHALS 10.2.1 Exhaustive enumeration 10.2.2 Bi-level optimisation 10.2.3 Fast-SL: massively pruning the search space 10.3 OVER-EXPRESSION 10.3.1 Flux Scanning based on Enforced Objective Flux (FSEOF) 10.4 OTHER PERTURBATIONS 10.5 EVALUATING AND RANKING PERTURBATIONS 10.6 APPLICATIONS OF CONSTRAINT-BASED MODELS 10.6.1 Metabolic engineering 10.6.2 Drug target identification 10.7 LIMITATIONS OF CONSTRAINT-BASED APPROACHES 10.7.1 Scope of genome-scale metabolic models 10.7.2 Incorrect predictions 10.8 TROUBLESHOOTING 10.8.1 Interpreting gene deletion simulations 10.9 SOFTWARE TOOLS EXERCISES REFERENCES FURTHER READING Modelling cellular interactions 11.1 MICROBIAL COMMUNITIES 11.1.1 Network-based approaches 11.1.2 Population-based and agent-based approaches 11.1.3 Constraint-based approaches 11.2 HOST-PATHOGEN INTERACTIONS (HPIs) 11.2.1 Network models 11.2.2 Dynamic models 11.2.3 Constraint-based models 11.3 SUMMARY 11.4 SOFTWARE TOOLS EXERCISES REFERENCES FURTHER READING Designing biological circuits 12.1 WHAT IS SYNTHETIC BIOLOGY? 12.2 FROMLEGO BRICKS TO BIOBRICKS 12.3 CLASSIC CIRCUIT DESIGN EXPERIMENTS 12.3.1 Designing an oscillator: the repressilator 12.3.2 Toggle switch 12.4 DESIGNING MODULES 12.4.1 Exploring the design space 12.4.2 Systems-theoretic approaches 12.4.3 Automating circuit design 12.5 DESIGN PRINCIPLES OF BIOLOGICAL NETWORKS 12.5.1 Redundancy 12.5.2 Modularity 12.5.3 Exaptation 12.5.4 Robustness 12.6 COMPUTING WITH CELLS 12.6.1 Adleman’s classic experiment 12.6.2 Examples of circuits that can compute 12.6.3 DNA data storage 12.7 CHALLENGES 12.8 SOFTWARE TOOLS EXERCISES REFERENCES FURTHER READING Robustness and evolvability of biological systems 13.1 ROBUSTNESS IN BIOLOGICAL SYSTEMS 13.1.1 Key mechanisms 13.1.2 Hierarchies and protocols 13.1.3 Organising principles 13.2 GENOTYPE SPACES AND GENOTYPE NETWORKS 13.2.1 Genotype spaces 13.2.2 Genotype-phenotype mapping 13.3 QUANTIFYING ROBUSTNESS AND EVOLVABILITY 13.4 SOFTWARE TOOLS EXERCISES REFERENCES FURTHER READING Epilogue: The Road Ahead Index 325
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐