图书简介
This textbook cover manufacturing, mechanics and dynamic mechanical analysis of composites in a comprehensive manner. It will be an ideal text for senior undergraduate and graduate students for a course on composite materials in the fields of mechanical engineering, automobile engineering and electronics engineering.
Chapter 1: Introduction 1.1 What is a composite? 1.2 Why composites? 1.3 History of composites 1.4 Classification of composites 1.4.1 Fiber reinforced composites 1.4.2 Laminated composites 1.4.3 Particulate composites 1.4.4 Combination of composites 1.5 Nanomaterials 1.6 Applications of composite materials 1.6.1 Aerospace applications 1.6.2 Missile applications 1.6.3 Launch vehicle applications 1.6.4 Railways 1.6.5 Sports Equipments 1.6.6 Automotives 1.6.7 Infrastructure 1.6.8 Medical applications 1.6.9 Renewables Chapter 2: Materials 2.1 Fibers 2.2 Types of fibers 2.3 Natural fibers 2.3.1 Silk fiber 2.3.2 Wool fiber 2.3.3 Spider silk 2.3.4 Sinew fiber 2.3.5 Camel hair 2.3.6 Cotton fiber 2.3.7 Jute fiber 2.3.8 Kenaf fiber 2.3.9 Hemp fiber 2.3.10 Flax fiber 2.3.11 Ramie fiber 2.3.12 Sisal fiber 2.3.13 Bamboo fiber 2.3.14 Maize (Corn) fiber 2.3.15 Coir fiber 2.3.16 Banana fiber 2.3.17 Kapok fiber 2.3.18 Abaca fiber 2.3.19 Raffia palm fiber 2.3.20 Sugarcane fiber 2.3.21 Asbestos fiber 2.3.22 Glass wool 2.3.23 Rock wool 2.3.24 Ceramic wool 2.4 Advanced fibers 2.4.1 Boron fiber 2.4.2 Carbon fiber 2.4.2.1 Fabrication of C fiber using PAN 2.4.2.2 Fabrication of C fiber using pitch 2.4.3 Glass fiber 2.4.4 Aramid (Kevlar) fiber 2.5 Woven Fabric 2.6 Matrices 2.6.1 Polymer matrix composite 2.6.2 Metal matrix composites 2.6.3 Ceramic matrix composites 2.6.4 Carbon-Carbon composites 2.7 Fiber surface treatment 2.7.1 Graphite fiber treatment 2.7.2 Glass fiber treatment 2.7.3 Polymer fiber treatment 2.8 Fiber content, density and void content 2.9 Load transfer mechanism Chapter 3: Manufacturing Techniques 3.1 Polymer matrix composites 3.1.1 Thermoset matrix composites 3.1.2 Thermoplastic matrix composites 3.2 Metal-matrix composites 3.2.1 Liquid-state processes 3.2.2 Solid-state processes 3.2.3 In-situ processes 3.3 Ceramic matrix composites 3.3.1 Cold pressing and sintering 3.3.2 Hot pressing 3.3.3 Reaction bonding 3.3.4 Infiltration 3.3.5 Polymer infiltration and pyrolysis 3.4 Miscellaneous techniques 3.4.1 Resin film infusion 3.4.2 Elastic reservoir molding 3.4.3 Tube rolling 3.4.4 Compocasting 3.4.5 Spark plasma sintering 3.4.6 Vortex addition technique 3.4.7 Pressureless infiltration process 3.4.8 Ultrasonic infiltration 3.4.9 Chemical vapor deposition 3.4.10 Physical vapor deposition 3.5 Basics of curing 3.5.1 Degree of curing 3.5.2 Curing cycle 3.5.3 Viscosity 3.5.4 Resin flow 3.5.5 Consolidation 3.5.6 Gel-time test 3.5.7 Shrinkage 3.5.8 Voids Chapter 4: Mechanics of Composites 4.1 Lamina 4.2 Laminates 4.3 Tensors 4.4 Deformation 4.5 Strain 4.6 Stress 4.7 Equilibrium 4.8 Boundary conditions 4.8.1 Tractions 4.8.2 Free surface boundary conditions 4.9 Continuity conditions 4.9.1 Displacement continuity 4.9.2 Traction continuity 4.10 Compatibility 4.11 Constitutive equations 4.12 Plane stress 4.13 Plane strain 4.14 Generalized plane problems 4.15 Strain energy density 4.16 Minimum principles 4.16.1 Minimum potential energy 4.16.2 Minimum complementary energy 4.16.3 Bounds and uniqueness 4.17 Effective property concept 4.18 Generalized Hooke’s law 4.19 Material symmetry 4.19.1 Monoclinic material 4.19.2 Orthotropic material 4.19.3 Transversely isotropic material 4.19.4 Isotropic material Chapter 5: Linear Elastic Stress-Strain Characteristics of Fiber Reinforced Composites 5.1 Stresses and deformation 5.2 Maxwell-Betti reciprocal theorem 5.3 Material properties relationship 5.4 Typical properties of materials 5.5 Interpretation of stress-strain relations 5.6 Free thermal strains 5.7 Effect of free thermal strains on stress-strain relations 5.8 Effect of free moisture strains on stress-strain relations Chapter 6: Micromechanics 6.1 Volume and mass fractions 6.1.1 Volume fractions 6.1.2 Mass fractions 6.2 Density 6.3 Void content 6.4 Evaluation of elastic moduli 6.4.1 Strength of materials approach 6.4.2 Semi-empirical models 6.4.3 Elasticity approach Chapter 7: Plane Stress Assumption 7.1 Stresses and strains under plane-stress condition 7.2 Numerical results 7.3 Effects of free thermal and free moisture strains Chapter 8: Global Coordinate System: Plane Stress Stress-Strain Relations 8.1 Transformation equations 8.2 Transformed reduced compliance 8.3 Transformed reduced stiffnesses 8.4 Engineering properties in global coordinates 8.5 Mutual influence coefficients 8.6 Free thermal and moisture strains 8.7 Effects of free thermal and moisture strains on plane stress stress-strain relations in global coordinate system Chapter 9: Classical Lamination Theory 9.1 Laminate nomenclature 9.2 The Kirchhoff hypothesis 9.3 Effects of the Kirchhoff hypothesis 9.4 Laminate strains 9.5 Laminate stresses 9.6 Stress distributions 9.6.1 [0/90]s laminate subjected to known x0 9.6.2 [0/90]s laminate subjected to known kx0 9.7 Force and moment resultants Chapter 10: The ABD Matrix 10.1 Force and moment resultants 10.2 The ABD matrix 10.3 Classification of laminates 10.3.1 Symmetric laminates 10.3.2 Balanced laminates 10.3.3 Symmetric balanced laminates 10.3.4 Cross-ply laminates 10.3.5 Symmetric cross-ply laminates Chapter 11: Failure Theories for Composite Materials 11.1 Theories of failure 11.2 Hill’s theory of failure 11.3 Tsai-Hill theory of failure 11.4 Hoffman theory of failure 11.5 Maximum stress failure theory 11.6 Maximum strain theory 11.7 The Tsai-Wu failure criterion 11.8 Hashin theory Chapter 12: Mechanics of Short-Fiber Reinforced Composites 12.1 Notation 12.2 Average properties 12.3 Theoretical models 12.3.1 Cox shear lag model 12.3.2 Eshelby’s equivalent inclusion 12.3.3 Dilute Eshelby’s model 12.3.4 Mori-Tanaka model 12.3.5 Chow model 12.3.6 Modified Halpin-Tsai or Finegan model 12.3.7 Hashin-Shtrikman model 12.3.8 Lielens model 12.3.9 Self-consistent model 12.4 Fast fourier transform numerical homogenization methods 12.4.1 FFT based homogenization method 12.4.2 Implementation of FFT based homogenization method Chapter 13: Toughness of Composite Materials 13.1 Basics 13.2 Interfacial fracture 13.3 Work of fracture 13.3.1 Deformation of matrix 13.3.2 Fiber fracture 13.3.3 Interfacial de-bonding 13.3.4 Frictional sliding and fiber pull-out 13.3.5 Effect of microstructure 13.4 Sub-critical crack growth 13.4.1 Fatigue 13.4.2 Stress-corrosion cracking Chapter 14: Inter-laminar Stresses 14.1 Finite width coupon 14.2 Equilibrium considerations 14.3 Inter-laminar Fyz shear force 14.3.1 Uniform strain loading 14.3.2 Curvature loading 14.4 Inter-laminar Mz moment 14.4.1 Uniform strain loading 14.4.2 Curvature loading 14.5 Inter-laminar Fzx shear force 14.5.1 Uniform strain loading 14.5.2 Curvature loading Chapter 15: Laminated Plates 15.1 Governing equations 15.2 Governing equations (in displacement form) 15.3 Simplification of governing equations 15.3.1 Symmetric laminates 15.3.2 Symmetric balanced laminates 15.3.3 Symmetric cross-ply laminates Chapter 16: Viscoelastic & Dynamic Behavior of Composites 16.1 Viscoelastic behavior of composites 16.1.1 Boltzmann superposition integral 16.1.2 Spring-dashpot models 16.1.3 Quasi-elastic approach 16.1.4 Complex modulus 16.1.5 Elastic-viscoelastic correspondence principle 16.2 Dynamic behavior 16.2.1 Longitudinal wave propagation 16.2.2 Flexural vibration 16.2.3 Damping analysis Chapter 17: Mechanical Testing of Composites 17.1 Societies for testing standards 17.2 Objectives of mechanical testing 17.3 Effect of anisotropy 17.4 Nature and quality of data 17.5 Samples and specimen for testing 17.6 Miscellaneous issues with testing 17.7 Primary properties 17.7.1 Microscopy 17.7.2 Ultrasonic Inspection 17.7.3 X-ray inspection 17.7.4 Thermography 17.8 Physical properties 17.8.1 Density 17.8.2 Fiber volume fraction 17.8.3 Void content 17.8.4 Moisture content 17.9 Tensile and compressive testing 17.9.1 Rosette principle 17.9.2 Tensile test 17.9.3 Compression test 17.10 Shear testing 17.10.1 Two-rail shear test 17.10.2 Three-rail shear test
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐