List of Contributors xi Preface xv 1 Dye-Sensitized Solar Cells: History, Components, Configuration, and Working Principle 1 S.N. Karthick, K.V. Hemalatha, Suresh Kannan Balasingam, F. Manik Clinton, S. Akshaya, and Hee-Je Kim 1.1 Introduction 1 1.2 History of Dye-sensitized Solar Cells 3 1.3 Components of DSSCs 4 1.3.1 Conductive Glass Substrate 4 1.3.2 Photoanode 4 1.3.3 Counter Electrode 4 1.3.4 Electrolytes 6 1.3.4.1 Types of Solvents Used in Electrolytes 6 1.3.4.2 Alternative Redox Mediators 7 1.3.5 Dyes 8 1.4 Configuration of DSSCs 8 1.4.1 Metal Substrates for Photoanode and Glass/TCO for Counter Electrode 8 1.4.2 Metal Substrates for Counter Electrode and Glass/TCO for Photoanode 10 1.4.3 Metal Substrate for Photoanode and Polymer Substrate for Counter Electrode 10 1.4.4 Polymer Substrates for Flexible DSSCs 10 1.4.5 Glass/TCO-Free Metal Substrates for Flexible DSSCs 11 1.4.6 Glass/TCO-Free Metal Wire Substrates for Flexible DSSCs 11 1.5 Working Principle of DSSCs 11 1.5.1 Electron Transfer Mechanism in DSSCs 14 1.5.2 Photoelectric Performance 14 Acknowledgments 15 References 15 2 Function of Photoanode: Charge Transfer Dynamics, Challenges, and Alternative Strategies 17 A. Dennyson Savariraj and R.V. Mangalaraja 2.1 Introduction 17 2.2 The General Composition of DSSC 18 2.3 Selection of Substrate for DSSCs 18 2.4 Photoanode 19 2.4.1 Coating Procedure 20 2.4.2 Significance of Using Mesoporous Structure 20 2.5 Sensitizer 20 2.6 Charge Transfer Mechanism 21 2.7 Interfaces 21 2.8 Significance of Dye/Metal Oxide Interface 22 2.9 Factors That Influence Efficiency in DSSC 23 2.9.1 Dye Aggregation 23 2.9.2 Effect of Metal Oxide on the Performance of Metal Oxide/Dye Interface 24 2.9.3 Role of Electronic Structure of Metal Oxides 25 2.10 Kinetics of Operation in DSSCs 26 2.11 Strategies to Improve the Photoanode Performance 28 2.11.1 TiCl4 Treatment 28 2.11.2 Composites 28 2.11.3 Light Scattering 29 2.11.4 Nanoarchitectures 29 2.11.5 Doping 30 2.11.6 Interfacial Engineering 30 2.12 Conclusion 30 Acknowledgments 31 References 31 3 Nanoarchitectures as Photoanodes 35 Hari Murthy 3.1 Introduction 35 3.2 DSSC Operation 36 3.3 Nanoarchitectures for Improved Device Performance of Photoanodes 39 3.3.1 TiO2 39 3.3.2 ZnO 51 3.3.3 SnO2 53 3.3.4 Nb2O5 55 3.3.5 Graphene 55 3.3.6 Other Photoanode Materials 56 3.4 Future Outlook and Challenges 65 3.5 Conclusion 66 References 66 4 Light Scattering Materials as Photoanodes 79 Rajkumar C and A. Arulraj 4.1 Introduction 79 4.2 Introduction to Light Scattering 79 4.3 Materials for Light Scattering in DSSCs 80 4.4 Early Theoretical Predictions of Light Scattering in DSSCs 82 4.5 Different Light Scattering Materials 85 4.5.1 Mixing of Large Particles into Small Particles 85 4.5.2 Voids as Light Scatters 87 4.5.3 Nano-Composites for Light Scattering 87 4.5.3.1 Nanowire-Nanoparticle Composite 87 4.5.3.2 Nanofiber-Nanoparticle Composite 87 4.5.3.3 SrTiO3 Nanocubes-ZnO Nanoparticle Composite 88 4.5.3.4 Silica Nanosphere-ZnO Nanoparticle Composite 88 4.5.3.5 SnO2 Aggregate-SnO2 Nanosheet Composite 88 4.5.3.6 Ag (4,4’-Dicyanamidobiphenyl) Complex-TiO2 NP Composite 88 4.6 Light Scattering Layers 88 4.6.1 Surface Modified TiO2 Particles in Scattering Layer 88 4.6.2 Dual Functional Materials in DSSC 89 4.6.3 Double-Light Scattering Layer 89 4.6.4 Large Particles as Scattering Layers 89 4.6.4.1 TiO2 Nanotubes 90 4.6.4.2 TiO2 Nanowires 90 4.6.4.3 TiO2 Nanospindles 90 4.6.4.4 TiO2 Nanofibers 90 4.6.4.5 TiO2 Rice Grain Nanostructures 90 4.6.4.6 Nest-Shaped TiO2 Structures 91 4.6.4.7 Nano-Embossed Hollow Spherical TiO2 91 4.6.4.8 Hexagonal TiO2 Plates 91 4.6.4.9 TiO2 Photonic Crystals 91 4.6.4.10 Cubic CeO2 Nanoparticles 94 4.6.4.11 Spherical TiO2 Aggregates 94 4.6.4.12 Hierarchical TiO2 Submicroflowers 94 4.6.4.13 SnO2 Aggregates 94 4.6.4.14 ZnO Nanoflowers 95 4.6.5 Core-Shell Nanoparticles for Light Scattering in DSSCs 95 4.6.6 Double-Layer Photoanode 95 4.6.6.1 TiO2 Aggregates 96 4.6.6.2 Morphology-Controlled 1D-3D Bilayer TiO2 Nanostructures 96 4.6.6.3 Quintuple-Shelled SnO2 Hollow Microspheres 96 4.6.6.4 Carbon-Based Materials for Light Scattering 96 4.6.6.5 3D N-Doped TiO2 Microspheres Used as Scattering Layers 96 4.6.6.6 ZnO Hollow Spheres and Urchin-like TiO2 Microspheres 96 4.6.6.7 SnO2 as Light-Scattering Layer 97 4.6.7 Three-Layer Photoanode 97 4.6.8 Four-Layer Photoanode 97 4.6.9 Surface Plasmon Effect in DSSC 97 4.7 Conclusion 99 References 99 5 Function of Compact (Blocking) Layer in Photoanode 107 Su Pei Lim 5.1 Introduction 107 5.2 Titanium Dioxide (TiO2) and Titanium (Ti)-Based Material as a Compact Layer 107 5.3 Zinc Oxide (ZnO) as a Compact Layer 112 5.4 Less Common Metal Oxide as a Compact Layer 117 5.5 Conclusion 118 References 121 6 Function of TiCl4 Posttreatment in Photoanode 125 T.S. Senthil and C.R. Kalaiselvi 6.1 Introduction 125 6.2 Role of TiCl4 Posttreatment in Photo-Anode 126 6.3 Effect of Posttreatment of TiCl4 on Various Perspectives 126 6.3.1 TiO2 Morphology, Porosity, and Surface Area 126 6.3.2 Dye Adsorption and Photocurrent Generation 129 6.3.3 Electron Transport and Diffusion Coefficient 132 6.3.4 Recombination Losses at Short Circuit 134 6.3.5 Concentration and Dipping Time of TiCl4 135 6.4 Conclusion 136 References 137 7 Doped Semiconductor as Photoanode 139 K. S. Rajni and T. Raguram 7.1 Introduction 139 7.2 Photoanode 140 7.3 Characterization 141 7.4 Doped TiO2 Photoanodes 141 7.4.1 Alkali Earth Metals-doped TiO2 141 7.4.1.1 Lithium-doped TiO2 141 7.4.1.2 Magnesium-doped TiO2 143 7.4.1.3 Calcium-doped TiO2 143 7.4.2 Metalloids-doped TiO2 143 7.4.2.1 Boron-doped TiO2 145 7.4.2.2 Silicon-doped TiO2 145 7.4.2.3 Germanium-doped TiO2 145 7.4.2.4 Antimony-doped TiO2 146 7.4.3 Nonmetals-doped TiO2 146 7.4.3.1 Carbon-doped TiO2 146 7.4.3.2 Nitrogen-doped TiO2 147 7.4.3.3 Fluorine-doped TiO2 147 7.4.3.4 Sulfur-doped TiO2 147 7.4.3.5 Iodine-doped TiO2 148 7.4.4 Transition Metals-doped TiO2 148 7.4.4.1 Scandium-doped TiO2 148 7.4.4.2 Vanadium, Niobium, and Tantalum-doped TiO2 148 7.4.4.3 Chromium-doped TiO2 148 7.4.4.4 Manganese and Cobalt-doped TiO2 150 7.4.4.5 Iron-doped TiO2 150 7.4.4.6 Nickel-doped TiO2 151 7.4.4.7 Copper-doped TiO2 152 7.4.4.8 Zinc-doped TiO2 153 7.4.4.9 Yttrium-doped TiO2 153 7.4.4.10 Zirconium-doped TiO2 154 7.4.4.11 Molybdenum-doped TiO2 154 7.4.4.12 Silver-doped TiO2 155 7.4.5 Post-Transition Metals 155 7.4.5.1 Aluminum-doped TiO2 155 7.4.5.2 Gallium-doped TiO2 155 7.4.5.3 Indium-doped TiO2 155 7.4.5.4 Tin-doped TiO2 156 7.4.6 Lanthanides-doped TiO2 156 7.4.6.1 Lanthanum-doped TiO2 156 7.4.6.2 Cerium-doped TiO2 156 7.4.6.3 Neodymium-doped TiO2 157 7.4.6.4 Samarium-doped TiO2 157 7.4.6.5 Europium-doped TiO2 157 7.4.7 Co-doped TiO2 158 7.4.8 Tri-doped TiO2 158 7.5 Conclusion 158 References 159 8 Binary Semiconductor Metal Oxide as Photoanodes 163 S.S. Kanmani, I. John Peter, A. Muthu Kumar, P. Nithiananthi, C. Raja Mohan, and K. Ramachandran 8.1 Why Metal Oxide Semiconductors? 163 8.2 Development of MOS-Based DSSC 164 8.2.1 TiO2/ZnO Core/Shell Configuration 165 8.2.2 Preparation of TiO2/ZnO Core/Shell Nanomaterials 165 8.2.3 TiO2/ZnO Core/Shell Nanomaterials 165 8.2.4 DSSC Performance of TiO2/ZnO Core/Shell Configuration 167 8.3 Importance of Heterostructures 170 8.4 I-V Characteristics 171 8.5 Matching of Bandgaps 171 8.6 Conclusion 189 References 189 9 Plasmonic Nanocomposite as Photoanode 193 Su Pei Lim 9.1 Introduction 193 9.2 Plasmonic Nanocomposite Modified TiO2 as Photoanode 193 9.3 Plasmonic Nanocomposite Modified ZnO as Photoanode 197 9.4 Plasmonic Nanocomposite Modified with Less Common Metal Oxide as Photoanode 203 9.5 Conclusion 206 References 206 10 Carbon Nanotubes-Based Nanocomposite as Photoanode 213 Giovana R. Cagnani, Nirav Joshi, and Flavio M. Shimizu 10.1 Introduction 213 10.2 Recent Advances on DSSC Photoanodes 215 10.3 Structure and Properties of Carbon Nanotubes 216 10.4 CNT-Based Photoanode Material 218 10.5 Effect of the Morphology and Interface of the CNT Photoanodes on the Efficiency of the DSSC 221 10.6 Summary and Future Prospect 223 Acknowledgment 223 References 223 11 Graphene-Based Nanocomposite as Photoanode 231 Subhendu K. Panda, G. Murugadoss, and R. Thangamuthu 11.1 Introduction 231 11.2 Graphene-TiO2 Nanocomposite for Photoanode 232 11.3 Conclusion and Remarks 241 References 242 12 Graphitic Carbon Nitride Based Nanocomposites as Photoanodes 247 T.S. Shyju, S. Anandhi, P. Vengatesh, C. Karthik Kumar, and M. Paulraj 12.1 Introduction 247 12.2 Importance of Graphitic Carbon Nitride 248 12.3 Photoanodes for DSSC 250 12.4 Preparation of Graphitic Carbon Nitride 252 12.4.1 Bulk Graphitic Carbon Nitride 253 12.4.2 Mesoporous Graphitic Carbon Nitrides 253 12.4.3 Doping in Graphitic Carbon Nitride 254 12.4.4 Ag Deposited g-C3N4 254 12.4.5 Chemical Doping 254 12.5 Operation Principles of DSSC 255 12.5.1 Nanostructured Graphitic Carbon Nitride in DSSC 257 12.6 Graphitic Carbon Nitride in Polymer Films Solar Cell 259 12.7 Preparation of Carbon Nitride Counter Electrode 259 12.8 Quantum Dot Graphitic Carbon Nitride 260 12.9 Porous Graphitic Carbon Nitride 260 12.10 Summary 260 Acknowledgment 261 References 261 Index 265
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐