图书简介
A revised and up-to-date guide to advanced vibration analysis written by a noted expert The revised and updated second edition of Vibration of Continuous Systems offers a guide to all aspects of vibration of continuous systems including: derivation of equations of motion, exact and approximate solutions and computational aspects. The author-a noted expert in the field-reviews all possible types of continuous structural members and systems including strings, shafts, beams, membranes, plates, shells, three-dimensional bodies, and composite structural members. Designed to be a useful aid in the understanding of the vibration of continuous systems, the book contains exact analytical solutions, approximate analytical solutions, and numerical solutions. All the methods are presented in clear and simple terms and the second edition offers a more detailed explanation of the fundamentals and basic concepts. Vibration of Continuous Systems revised second edition: Contains new chapters on Vibration of three-dimensional solid bodies; Vibration of composite structures; and Numerical solution using the finite element method Reviews the fundamental concepts in clear and concise language Includes newly formatted content that is streamlined for effectiveness Offers many new illustrative examples and problems Presents answers to selected problems Written for professors, students of mechanics of vibration courses, and researchers, the revised second edition of Vibration of Continuous Systems offers an authoritative guide filled with illustrative examples of the theory, computational details, and applications of vibration of continuous systems.
Preface xv Acknowledgments xix About the Author xxi 1 Introduction: Basic Concepts and Terminology 1 1.1 Concept of Vibration 1 1.2 Importance of Vibration 4 1.3 Origins and Developments in Mechanics and Vibration 5 1.4 History of Vibration of Continuous Systems 7 1.5 Discrete and Continuous Systems 12 1.6 Vibration Problems 15 1.7 Vibration Analysis 16 1.8 Excitations 17 1.9 Harmonic Functions 17 1.10 Periodic Functions and Fourier Series 24 1.11 Non periodic Functions and Fourier Integrals 25 1.12 Literature on Vibration of Continuous Systems 28 References 29 Problems 31 2 Vibration of Discrete Systems: Brief Review 33 2.1 Vibration of a Single-Degree-of-Freedom System 33 2.2 Vibration of Multi degree-of-Freedom Systems 43 2.3 Recent Contributions 60 References 61 Problems 62 3 Derivation of Equations: Equilibrium Approach 69 3.1 Introduction 69 3.2 Newton’s Second Law of Motion 69 3.3 D’Alembert’s Principle 70 3.4 Equation of Motion of a Bar in Axial Vibration 70 3.5 Equation of Motion of a Beam in Transverse Vibration 72 3.6 Equation of Motion of a Plate in Transverse Vibration 74 3.7 Additional Contributions 81 References 81 Problems 82 4 Derivation of Equations: Variational Approach 87 4.1 Introduction 87 4.2 Calculus of a Single Variable 87 4.3 Calculus of Variations 88 4.4 Variation Operator 91 4.5 Functional with Higher-Order Derivatives 93 4.6 Functional with Several Dependent Variables 95 4.7 Functional with Several Independent Variables 96 4.8 Extremization of a Functional with Constraints 98 4.9 Boundary Conditions 102 4.10 Variational Methods in Solid Mechanics 106 4.11 Applications of Hamilton’s Principle 116 4.12 Recent Contributions 121 Notes 121 References 122 Problems 122 5 Derivation of Equations: Integral Equation Approach 125 5.1 Introduction 125 5.2 Classification of Integral Equations 125 5.3 Derivation of Integral Equations 127 5.4 General Formulation of the Eigenvalue Problem 132 5.6 Recent Contributions 149 References 150 Problems 151 6 Solution Procedure: Eigenvalue and Modal Analysis Approach 153 6.1 Introduction 153 6.2 General Problem 153 6.3 Solution of Homogeneous Equations: Separation-of-Variables Technique 155 6.4 Sturm-Liouville Problem 156 6.5 General Eigenvalue Problem 165 6.6 Solution of Nonhomogeneous Equations 169 6.7 Forced Response of Viscously Damped Systems 171 6.8 Recent Contributions 173 References 174 Problems 175 7 Solution Procedure: Integral Transform Methods 177 7.1 Introduction 177 7.2 Fourier Transforms 178 7.3 Free Vibration of a Finite String 184 7.4 Forced Vibration of a Finite String 186 7.5 Free Vibration of a Beam 188 7.6 Laplace Transforms 191 7.7 Free Vibration of a String of Finite Length 197 7.8 Free Vibration of a Beam of Finite Length 200 7.9 Forced Vibration of a Beam of Finite Length 201 7.10 Recent Contributions 204 References 205 Problems 206 8 Transverse Vibration of Strings 209 8.1 Introduction 209 8.2 Equation of Motion 209 8.3 Initial and Boundary Conditions 213 8.4 Free Vibration of an Infinite String 215 8.5 Free Vibration of a String of Finite Length 221 8.6 Forced Vibration 231 8.7 Recent Contributions 235 Note 236 References 236 Problems 237 9 Longitudinal Vibration of Bars 239 9.1 Introduction 239 9.2 Equation of Motion Using Simple Theory 239 9.3 Free Vibration Solution and Natural Frequencies 241 9.4 Forced Vibration 259 9.5 Response of a Bar Subjected to Longitudinal Support Motion 262 9.6 Rayleigh Theory 263 9.7 Bishop’s Theory 265 9.8 Recent Contributions 272 References 273 Problems 273 10 Torsional Vibration of Shafts 277 10.1 Introduction 277 10.2 Elementary Theory: Equation of Motion 277 10.3 Free Vibration of Uniform Shafts 282 10.4 Free Vibration Response due to Initial Conditions: Modal Analysis 295 10.5 Forced Vibration of a Uniform Shaft: Modal Analysis 298 10.6 Torsional Vibration of Noncircular Shafts: Saint-Venant’s Theory 301 10.7 Torsional Vibration of Noncircular Shafts, Including Axial Inertia 305 10.8 Torsional Vibration of Noncircular Shafts: The Timoshenko-Gere Theory 306 10.9 Torsional Rigidity of Noncircular Shafts 309 10.10 Prandtl’s Membrane Analogy 314 10.11 Recent Contributions 319 References 320 Problems 321 11 Transverse Vibration of Beams 323 11.1 Introduction 323 11.2 Equation of Motion: The Euler-Bernoulli Theory 323 11.3 Free Vibration Equations 331 11.4 Free Vibration Solution 331 11.5 Frequencies and Mode Shapes of Uniform Beams 332 11.6 Orthogonality of Normal Modes 345 11.7 Free Vibration Response due to Initial Conditions 347 11.8 Forced Vibration 350 11.9 Response of Beams under Moving Loads 356 11.10 Transverse Vibration of Beams Subjected to Axial Force 358 11.11 Vibration of a Rotating Beam 363 11.12 Natural Frequencies of Continuous Beams on Many Supports 365 11.13 Beam on an Elastic Foundation 370 11.14 Rayleigh’s Theory 375 11.15 Timoshenko’s Theory 377 11.16 Coupled Bending-Torsional Vibration of Beams 386 11.17 Transform Methods: Free Vibration of an Infinite Beam 391 11.18 Recent Contributions 393 References 395 Problems 396 12 Vibration of Circular Rings and Curved Beams 399 12.1 Introduction 399 12.2 Equations of Motion of a Circular Ring 399 12.3 In-Plane Flexural Vibrations of Rings 404 12.4 Flexural Vibrations at Right Angles to the Plane of a Ring 408 12.5 Torsional Vibrations 413 12.6 Extensional Vibrations 413 12.7 Vibration of a Curved Beam with Variable Curvature 414 12.8 Recent Contributions 423 References 424 Problems 425 13 Vibration of Membranes 427 13.1 Introduction 427 13.2 Equation of Motion 427 13.3 Wave Solution 432 13.4 Free Vibration of Rectangular Membranes 433 13.5 Forced Vibration of Rectangular Membranes 444 13.6 Free Vibration of Circular Membranes 450 13.7 Forced Vibration of Circular Membranes 454 13.8 Membranes with Irregular Shapes 459 13.9 Partial Circular Membranes 459 13.10 Recent Contributions 460 Notes 461 References 462 Problems 463 14 Transverse Vibration of Plates 465 14.1 Introduction 465 14.2 Equation of Motion: Classical Plate Theory 465 14.3 Boundary Conditions 473 14.4 Free Vibration of Rectangular Plates 479 14.5 Forced Vibration of Rectangular Plates 489 14.6 Circular Plates 493 14.7 Free Vibration of Circular Plates 498 14.8 Forced Vibration of Circular Plates 503 14.9 Effects of Rotary Inertia and Shear Deformation 507 14.10 Plate on an Elastic Foundation 529 14.11 Transverse Vibration of Plates Subjected to In-Plane Loads 531 14.12 Vibration of Plates with Variable Thickness 537 14.13 Recent Contributions 543 References 545 Problems 547 15 Vibration of Shells 549 15.1 Introduction and Shell Coordinates 549 15.2 Strain-Displacement Relations 560 15.3 Love’s Approximations 564 15.4 Stress-Strain Relations 570 15.5 Force and Moment Resultants 571 15.6 Strain Energy, Kinetic Energy, and Work Done by External Forces 579 15.7 Equations of Motion from Hamilton’s Principle 582 15.8 Circular Cylindrical Shells 590 15.9 Equations of Motion of Conical and Spherical Shells 599 15.10 Effect of Rotary Inertia and Shear Deformation 600 15.11 Recent Contributions 611 Notes 612 References 612 Problems 614 16 Vibration of Composite Structures 617 16.1 Introduction 617 16.2 Characterization of a Unidirectional Lamina with Loading Parallel to the Fibers 617 16.3 Different Types of Material Behavior 619 16.4 Constitutive Equations or Stress-Strain Relations 620 16.5 Coordinate Transformations for Stresses and Strains 626 16.6 Lamina with Fibers Oriented at an Angle 632 16.7 Composite Lamina in Plane Stress 634 16.8 Laminated Composite Structures 641 16.9 Vibration Analysis of Laminated Composite Plates 659 16.10 Vibration Analysis of Laminated Composte Beams 663 16.11 Recent Contributions 666 References 667 Problems 668 17 Approximate Analytical Methods 671 17.1 Introduction 671 17.2 Rayleigh’s Quotient 672 17.3 Rayleigh’s Method 674 17.4 Rayleigh-Ritz Method 685 17.5 Assumed Modes Method 695 17.6 Weighted Residual Methods 697 17.7 Galerkin’s Method 698 17.8 Collocation Method 704 17.9 Subdomain Method 709 17.10 Least Squares Method 711 17.11 Recent Contributions 718 References 719 Problems 721 18 Numerical Methods: Finite Element Method 725 18.1 Introduction 725 18.2 Finite Element Procedure 725 18.3 Element Matrices of Different Structural Problems 739 18.4 Dynamic Response Using the Finite Element Method 753 18.5 Additional and Recent Contributions 760 Note 763 References 763 Problems 765 A Basic Equations of Elasticity 769 A.1 Stress 769 A.2 Strain-Displacement Relations 769 A.3 Rotations 771 A.4 Stress-Strain Relations 772 A.5 Equations of Motion in Terms of Stresses 774 A.6 Equations of Motion in Terms of Displacements 774 B Laplace and Fourier Transforms 777 Index 783
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐