图书简介
Provides full coverage of the wide range of multivariate topics that graduate students across the social and behavioral sciences encounter, using a conceptual, non-mathematical, approach.
Preface \\ About the Authors \\ PART I: FUNDAMENTALS OF MULTIVARIATE DESIGN \\ Chapter 1: An Introduction to Multivariate Design \\ 1.1 The Use of Multivariate Designs \\ 1.2 The Definition of the Multivariate Domain \\ 1.3 The Importance of Multivariate Designs \\ 1.4 The General Form of a Variate \\ 1.5 The Type of Variables Combined to Form a Variate \\ 1.6 The General Organization of the Book \\ Chapter 2: Some Fundamental Research Design Concepts \\ 2.1 Populations and Samples \\ 2.2 Variables and Scales of Measurement \\ 2.3 Independent Variables, Dependent Variables, and Covariates \\ 2.4 Between Subjects and Within Subjects Independent Variables \\ 2.5 Latent Variables and Measured Variables \\ 2.6 Endogenous and Exogenous Variables \\ 2.7 Statistical Significance \\ 2.8 Statistical Power \\ 2.9 Recommended Readings \\ Chapter 3A: Data Screening \\ 3A.1 Overview \\ 3A.2 Value Cleaning \\ 3A.3 Patterns of Missing Values \\ 3A.4 Overview of Methods of Handling Missing Data \\ 3A.5 Deletion Methods of Handling Missing Data \\ 3A.6 Single Imputation Methods of Handling Missing Data \\ 3A.7 Modern Imputation Methods of Handling Missing Data \\ 3A.8 Recommendations for Handling Missing Data \\ 3A.9 Outliers \\ 3A.10 Using Descriptive Statistics in Data Screening \\ 3A.11 Using Pictorial Representations in Data Screening \\ 3A.12 Multivariate Statistical Assumptions Underlying the General Linear Model \\ 3A.13 Data Transformations \\ 3A.14 Recommended Readings \\ Chapter 3B: Data Screening Using IBM SPSS \\ 3B.1 The Look of IBM SPSS \\ 3B.2 Data Cleaning: All Variables \\ 3B.3 Screening Quantitative Variables \\ 3B.4 Missing Values: Overview \\ 3B.5 Missing Value Analysis \\ 3B.6 Multiple Imputation \\ 3B.7 Mean Substitution as a Single Imputation Approach \\ 3B.8 Univariate Outliers \\ 3B.9 Normality \\ 3B.10 Linearity \\ 3B.11 Multivariate Outliers \\ 3B.12 Screening Within Levels of Categorical Variables \\ 3B.13 Reporting the Data Screening Results \\ PART II: BASIC AND ADVANCED REGRESSION ANALYSIS \\ Chapter 4A: Bivariate Correlation and Simple Linear Regression \\ 4A.1 The Concept of Correlation \\ 4A.2 Different Types of Relationships \\ 4A.3 Statistical Significance of the Correlation Coefficient \\ 4A.4 Strength of Relationship \\ 4A.5 Pearson Correlation Using a Quantitative Variable and a Dichotomous Nominal Variable \\ 4A.6 Simple Linear Regression \\ 4A.7 Statistical Error in Prediction: Why Bother With Regression? \\ 4A.8 How Simple Linear Regression Is Used \\ 4A.9 Factors Affecting the Computed Pearson r and Regression Coefficients \\ 4A.10 Recommended Readings \\ Chapter 4B: Bivariate Correlation and Simple Linear Regression Using IBM SPSS \\ 4B.1 Bivariate Correlation: Analysis Setup \\ 4B.2 Simple Linear Regression \\ 4B.3 Reporting Simple Linear Regression Results \\ Chapter 5A: Multiple Regression Analysis \\ 5A.1 General Considerations \\ 5A.2 Statistical Regression Methods \\ 5A.3 The Two Classes of Variables in a Multiple Regression Analysis \\ 5A.4 Multiple Regression Research \\ 5A.5 The Regression Equations \\ 5A.6 The Variate in Multiple Regression \\ 5A.7 The Standard (Simultaneous) Regression Method \\ 5A.8 Partial Correlation \\ 5A.9 The Squared Multiple Correlation \\ 5A.10 The Squared Semipartial Correlation \\ 5A.11 Structure Coefficients \\ 5A.12 Statistical Summary of the Regression Solution \\ 5A.13 Evaluating the Overall Model \\ 5A.14 Evaluating the Individual Predictor Results \\ 5A.15 Step Methods of Building the Model \\ 5A.16 The Forward Method \\ 5A.17 The Backward Method \\ 5A.18 Backward Versus Forward Solutions \\ 5A.19 The Stepwise Method \\ 5A.20 Evaluation of the Statistical Methods \\ 5A.21 Collinearity and Multicollinearity \\ 5A.22 Recommended Readings \\ Chapter 5B: Multiple Regression Analysis Using IBM SPSS \\ 5B.1 Standard Multiple Regression \\ 5B.2 Stepwise Multiple Regression \\ Chapter 6A: Beyond Statistical Regression \\ 6A.1 A Larger World of Regression \\ 6A.2 Hierarchical Linear Regression \\ 6A.3 Suppressor Variables \\ 6A.4 Linear and Nonlinear Regression \\ 6A.5 Dummy and Effect Coding \\ 6A.6 Moderator Variables and Interactions \\ 6A.7 Simple Mediation: A Minimal Path Analysis \\ 6A.8 Recommended Readings \\ Chapter 6B: Beyond Statistical Regression Using IBM SPSS \\ 6B.1 Hierarchical Linear Regression \\ 6B.2 Polynomial Regression \\ 6B.3 Dummy and Effect Coding \\ 6B.4 Interaction Effects of Quantitative Variables in Regression \\ 6B.5 Mediation \\ Chapter 7A: Canonical Correlation Analysis \\ 7A.1 Overview \\ 7A.2 Canonical Functions or Roots \\ 7A.3 The Index of Shared Variance \\ 7A.4 The Dynamics of Extracting Canonical Functions \\ 7A.5 Accounting for Variance: Eigenvalues and Theta Values \\ 7A.6 The Multivariate Tests of Statistical Significance \\ 7A.7 Specifying the Amount of Variance Explained in Canonical Correlation Analysis \\ 7A.8 Coefficients Associated With the Canonical Functions \\ 7A.9 Interpreting the Canonical Functions \\ 7A.10 Recommended Readings \\ Chapter 7B: Canonical Correlation Analysis Using IBM SPSS \\ 7B.1 Canonical Correlation: Analysis Setup \\ 7B.2 Canonical Correlation: Overview of Output \\ 7B.3 Canonical Correlation: Multivariate Tests of Significance \\ 7B.4 Canonical Correlation: Eigenvalues and Canonical Correlations \\ 7B.5 Canonical Correlation: Dimension Reduction Analysis \\ 7B.6 Canonical Correlation: How Many Functions Should Be Interpreted? \\ 7B.7 Canonical Correlation: The Coefficients in the Output \\ 7B.8 Canonical Correlation: Interpreting the Dependent Variates \\ 7B.9 Canonical Correlation: Interpreting the Predictor Variates \\ 7B.10 Canonical Correlation: Interpreting the Canonical Functions \\ 7B.11 Reporting of the Canonical Correlation Analysis Results \\ Chapter 8A: Multilevel Modeling \\ 8A.1 The Name of the Procedure \\ 8A.2 The Rise of Multilevel Modeling \\ 8A.3 The Defining Feature of Multilevel Modeling: Hierarchically Structured Data \\ 8A.4 Nesting and the Independence Assumption \\ 8A.5 The Intraclass Correlation as an Index of Clustering \\ 8A.6 Consequences of Violating the Independence Assumption \\ 8A.7 Some Ways in Which Level 2 Groups Can Differ \\ 8A.8 The Random Coefficient Regression Model \\ 8A.9 Centering the Variables \\ 8A.10 The Process of Building the Multilevel Model \\ 8A.11 Recommended Readings \\ Chapter 8B: Multilevel Modeling Using IBM SPSS \\ 8B.1 Numerical Example \\ 8B.2 Assessing the Unconditional Model \\ 8B.3 Centering the Covariates \\ 8B.4 Building the Multilevel Models: Overview \\ 8B.5 Building the First Model \\ 8B.6 Building the Second Model \\ 8B.7 Building the Third Model \\ 8B.8 Building the Fourth Model \\ 8B.9 Reporting the Multilevel Modeling Results \\ Chapter 9A: Binary and Multinomial Logistic Regression and ROC Analysis \\ 9A.1 Overview \\ 9A.2 The Variables in Logistic Regression Analysis \\ 9A.3 Assumptions of Logistic Regression \\ 9A.4 Coding of the Binary Variables in Logistic Regression \\ 9A.5 The Shape of the Logistic Regression Function \\ 9A.6 Probability, Odds, and Odds Ratios \\ 9A.7 The Logistic Regression Model \\ 9A.8 Interpreting Logistic Regression Results in Simpler Language \\ 9A.9 Binary Logistic Regression With a Single Binary Predictor \\ 9A.10 Binary Logistic Regression With a Single Quantitative Predictor \\ 9A.11 Binary Logistic Regression With a Categorical and a Quantitative Predictor \\ 9A.12 Evaluating the Logistic Model \\ 9A.13 Strategies for Building the Logistic Regression Model \\ 9A.14 ROC Analysis \\ 9A.15 Recommended Readings \\ Chapter 9B: Binary and Multinomial Logistic Regression and ROC Analysis Using IBM SPSS \\ 9B.1 Binary Logistic Regression \\ 9B.2 ROC Analysis \\ 9B.3 Multinomial Logistic Regression \\ PART III: STRUCTURAL RELATIONSHIPS OF MEASURED AND LATENT VARIABLES \\ Chapter 10A: Principal Components Analysis and Exploratory Factor Analysis \\ 10A.1 Orientation and Terminology \\ 10A.2 Origins of Factor Analysis \\ 10A.3 How Factor Analysis Is Used in Psychological Research \\ 10A.4 The General Organization of This Chapter \\ 10A.5 Where the Analysis Begins: The Correlation Matrix \\ 10A.6 Acquiring Perspective on Factor Analysis \\ 10A.7 Important Distinctions Within Our Generic Label of Factor Analysis \\ 10A.8 The First Phase: Component Extraction \\ 10A.9 Distances of Variables From a Component \\ 10A.10 Principal Components Analysis Versus Factor Analysis \\ 10A.11 Different Extraction Methods \\ 10A.12 Recommendations Concerning Extraction \\ 10A.13 The Rotation Process \\ 10A.14 Orthogonal Factor Rotation Methods \\ 10A.15 Oblique Factor Rotation \\ 10A.16 Choosing Between Orthogonal and Oblique Rotation Strategies \\ 10A.17 The Factor Analysis Output \\ 10A.18 Interpreting Factors Based on the Rotated Matrices \\ 10A.19 Selecting the Factor Solution \\ 10A.20 Sample Size Issues \\ 10A.21 Building Reliable Subscales \\ 10A.22 Recommended Readings \\ Chapter 10B: Principal Components Analysis and Exploratory Factor Analysis Using IBM SPSS \\ 10B.1 Numerical Example \\ 10B.2 Preliminary Principal Components Analysis \\ 10B.3 Principal Components Analysis With a Promax Rotation: Two-Component Solution \\ 10B.4 ULS Analysis With a Promax Rotation: Two-Factor Solution \\ 10B.5 Wrap-Up of the Two-Factor Solution \\ 10B.6 Looking for Six Dimensions \\ 10B.7 Principal Components Analysis With a Promax Rotation: Six-Component Solution \\ 10B.8 ULS Analysis With a Promax Rotation: Six-Component Solution \\ 10B.9 Principal Axis Factor Analysis With a Promax Rotation: Six-Component Solution \\ 10B.10 Wrap-Up of the Six-Factor Solution \\ 10B.11 Assessing Reliability: Our General Strategy \\ 10B.12 Assessing Reliability: The Global Domains \\ 10B.13 Assessing Reliability: The Six Item Sets Based on the ULS/Promax Structure \\ 10B.14 Computing Scales Based on the ULS Promax Structure \\ 10B.15 Using the Computed Variables in Further Analyses \\ 10B.16 Reporting the Exploratory Factor Analysis Results \\ Chapter 11A: Confirmatory Factor Analysis \\ 11A.1 Overview \\ 11A.2 The General Form of a Confirmatory Model \\ 11A.3 The Difference Between Latent and Measured Variables \\ 11A.4 Contrasting Principal Components Analysis and Exploratory Factor Analysis With Confirmatory Factor Analysis \\ 11A.5 Confirmatory Factor Analysis Is Theory Based \\ 11A.6 The Logic of Performing a Confirmatory Factor Analysis \\ 11A.7 Model Specification \\ 11A.8 Model Identification \\ 11A.9 Model Estimation \\ 11A.10 Model Evaluation Overview \\ 11A.11 Assessing Fit of Hypothesized Models \\ 11A.12 Model Estimation: Assessing Pattern Coefficients \\ 11A.13 Model Respecification \\ 11A.14 General Considerations \\ 11A.15 Recommended Readings \\ Chapter 11B: Confirmatory Factor Analysis Using IBM SPSS Amos \\ 11B.1 Using IBM SPSS Amos \\ 11B.2 Numerical Example \\ 11B.3 Analysis Setup to Specify the Model \\ 11B.4 Model Identification \\ 11B.5 Structuring and Performing the Analysis \\ 11B.6 Working With the Analysis Output \\ 11B.7 Respecifying the Model \\ 11B.8 Output From the Respecified Model \\ 11B.9 Reporting Confirmatory Factor Analysis Results \\ Chapter 12A: Path Analysis: Multiple Regression Analysis \\ 12A.1 Overview \\ 12A.2 The Concept of a Path Model \\ 12A.3 The Appeal of Path Over Multiple Regression Analysis \\ 12A.4 Causality and Path Analysis \\ 12A.5 The Roles Played by Variables in a Path Structure \\ 12A.6 The Assumptions of Path Analysis \\ 12A.7 Missing Values in Path Analysis \\ 12A.8 The Multiple Regression Approach to Path Analysis \\ 12A.9 Indirect and Total Effects \\ 12A.10 Recommended Readings \\ Chapter 12B: Path Analysis: Multiple Regression Analysis Using IBM SPSS \\ 12B.1 The Data Set and Model Used in Our Example \\ 12B.2 Identifying the Variables in Each Analysis \\ 12B.3 Predicting Months_Teaching \\ 12B.4 Predicting Good_Teaching \\ 12B.5 Reporting the Path Analysis Results \\ Chapter 13A: Path Analysis: Structural Equation Modeling \\ 13A.1 Comparing Multiple Regression and Structural Equation Model Approaches \\ 13A.2 Differences Between the Equations Underlying Multiple Regression and Structural Equation Model Procedures \\ 13A.3 Configuring the Structural Model \\ 13A.4 Identifying the Structural Equation Model \\ 13A.5 Recommended Readings \\ Chapter 13B: Path Analysis: Structural Equation Modeling Using IBM SPSS Amos \\ 13B.1 Overview \\ 13B.2 The Data Set and Model Used in Our Example \\ 13B.3 Analysis Setup \\ 13B.4 The Analysis Output \\ 13B.5 Reporting the Path Analysis Results \\ Chapter 14A: Structural Equation Modeling \\ 14A.1 Overview of Structural Equation Modeling \\ 14A.2 Model Quality and the Structural Aspects of the Model \\ 14A.3 Latent Variables and Their Indicators \\ 14A.4 Identifying Structural Equation Models \\ 14A.5 Recommended Readings \\ Chapter 14B: Structural Equation Modeling Using IBM SPSS Amos \\ 14B.1 Overview \\ 14B.2 The Data Set and Model Used in Our Example \\ 14B.3 Model Configuration and Analysis Setup \\ 14B.4 Model Identification \\ 14B.5 Generating the Output \\ 14B.6 Analysis Output for the Model \\ 14B.7 Configuring and Evaluating the Respecified Model \\ 14B.8 Summary of the Results of the Model and Noting the Follow-up Analyses \\ 14B.9 Assessing the Indirect Effects in the Full Model \\ 14B.10 Assessing the Possibility of Having Obtained Complete Mediation in the Full Model \\ 14B.11 Assessing Mediation Through Self_ Regulation \\ 14B.12 Assessing Mediation Through Extrinsic_Goals \\ 14B.13 Synthesis of the Results \\ 14B.14 Reporting the SEM Results \\ Chapter 15A: Measurement and Structural Equation Modeling Invariance: Applying a Model to a Different Group \\ 15A.1 Overview \\ 15A.2 The General Strategy Used to Compare Groups \\ 15A.3 The Omnibus Model Comparison Phase \\ 15A.4 The Coefficient Comparison Phase \\ 15A.5 Recommended Readings \\ Chapter 15B: Assessing Measurement and Structural Invariance for Confirmatory Factor Analysis and Structural Equation Models Using IBM SPSS Amos \\ 15B.1 Overview and General Analysis Strategy \\ 15B.2 The Data Set Used for Examining Invariance in Both the Confirmatory Factor Analysis and Structural Equation Model Examples \\ 15B.3 Confirmatory Factor Analysis Invariance: Global Preliminary Analysis \\ 15B.4 Confirmatory Factor Analysis Invariance: Group 1 (Rural) Analysis \\ 15B.5 Confirmatory Factor Analysis Invariance: Group 2 Analysis \\ 15B.6 Confirmatory Factor Analysis Invariance: Model Evaluation Setup \\ 15B.7 Confirmatory Factor Analysis Invariance: Model Evaluation Output \\ 15B.8 Reporting the Confirmatory Factor Analysis Invariance Results \\ 15B.9 Structural Equation Model Invariance: Global Preliminary Analysis \\ 15B.10 Structural Equation Model Invariance: Group 1 (Rural) Analysis \\ 15B.11 Structural Equation Model Invariance: Group 2 Analysis \\ 15B.12 Structural Equation Model Invariance: Model Evaluation Setup \\ 15B.13 Structural Equation Model Invariance: Model Evaluation Output \\ 15B.14 Reporting the Structural Equation Model Invariance Results \\ PART IV: CONSOLIDATING STIMULI AND CASES \\ Chapter 16A: Multidimensional Scaling \\ 16A.1 Overview \\ 16A.2 The Paired Comparison Method \\ 16A.3 Dissimilarity Data in MDS \\ 16A.4 Similarity/Dissimilarity Conceived as an Index of Distance \\ 16A.5 Dimensionality in MDS \\ 16A.6 Data Collection Methods \\ 16A.7 Similarity Versus Dissimilarity \\ 16A.8 Distance Models \\ 16A.9 A Classification Schema for MDS Techniques \\ 16A.10 Types of MDS Models \\ 16A.11 Assessing Model Fit \\ 16A.12 Recommended Readings \\ Chapter 16B: Multidimensional Scaling Using IBM SPSS \\ 16B.1 The Structure of This Chapter \\ 16B.2 Metric CMDS \\ 16B.3 Nonmetric CMDS \\ 16B.4 Metric WMDS \\ Chapter 17A: Cluster Analysis \\ 17A.1 Introduction \\ 17A.2 Two Types of Clustering \\ 17A.3 Hierarchical Clustering \\ 17A.4 k-Means Clustering \\ 17A.5 Recommended Readings \\ Chapter 17B: Cluster Analysis Using IBM SPSS \\ 17B.1 Hierarchical Cluster Analysis \\ 17B.2 k-Means Cluster Analysis \\ PART V: COMPARING SCORES \\ Chapter 18A: Between Subjects Comparisons of Means \\ 18A.1 Overview \\ 18A.2 Historical Context \\ 18A.3 A Brief Review of Some Basic Concepts \\ 18A.4 Using Multiple Dependent Variables \\ 18A.5 Evaluating Statistical Significance \\ 18A.6 Strength of Effect \\ 18A.7 Designs, Effects, and Partitioning of the Variance \\ 18A.8 Post-ANOVA Comparisons of Means \\ 18A.9 Hierarchical Analysis of Effects \\ 18A.10 Covariance Analysis \\ 18A.11 Recommended Readings \\ Chapter 18B: Between Subjects ANCOVA, MANOVA, and MANCOVA Using IBM SPSS \\ 18B.1 One-Way ANOVA Without the Covariate \\ 18B.2 One-Way ANCOVA \\ 18B.3 Three-Group MANOVA \\ 18B.4 Two-Group MANCOVA \\ 18B.5 Two-Way MANOVA Without the Covariate \\ 18B.6 Two-Way MANOVA Incorporating the Covariate (MANCOVA) \\ Chapter 19A: Discriminant Function Analysis \\ 19A.1 Overview \\ 19A.2 The Formal Roles of the Variables in Discriminant Function Analysis and MANOVA \\ 19A.3 Discriminant Function Analysis and Logistic Analysis Compared \\ 19A.4 Sample Size for Discriminant Analysis \\ 19A.5 The Discriminant Model \\ 19A.6 Extracting Multiple Discriminant Functions \\ 19A.7 Dynamics of Extracting Discriminant Functions \\ 19A.8 Interpreting the Discriminant Function \\ 19A.9 Assessing Statistical Significance and the Relative Strength of the Discriminative Functions \\ 19A.10 Using Discriminant Function Analysis for Classification \\ 19A.11 Different Discriminant Function Methods \\ 19A.12 Recommended Readings \\ Chapter 19B: Three-Group Discriminant Function Analysis Using IBM SPSS \\ 19B.1 Numerical Example \\ 19B.2 Analysis Setup \\ 19B.3 Analysis Output \\ 19B.4 Reporting the Results of a Three- Group Discriminant Function Analysis \\ Chapter 20A: Survival Analysis \\ 20A.1 Overview \\ 20A.2 The Dependent Variable in Survival Analysis \\ 20A.3 Ordinary Least Squares Regression Versus Survival Analysis \\ 20A.4 Censored Observations \\ 20A.5 Overview of Analysis Techniques for Survival Analysis in IBM SPSS \\ 20A.6 Life Table Analysis \\ 20A.7 Kaplan–Meier (Product-Limit) Survival Function Analysis \\ 20A.8 Cox Proportional Hazard Regression Model \\ 20A.9 Recommended Readings \\ Chapter 20B: Survival Analysis Using IBM SPSS \\ 20B.1 Numerical Example \\ 20B.3 Kaplan–Meier (Product-Limit) Survival Function Analysis \\ 20B.4 Cox Proportional Hazard Regression Model \\ References \\ Appendix A: Statistics Tables \\ Author Index \\ Subject Index
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐