图书简介
Discrete Mathematics is a textbook designed for the students of computer science engineering, information technology, and computer applications to help them develop the foundation of theoretical computer science.
1. Introduction to Discrete Mathematics and Propositional Logic 1; 1.1 Discrete MathematicsA Brief Introduction; 1.2 Introduction to Propositional Logic; 1.3 Proposition; 1.4 Logical Operators; 1.4.1 Negation (~); 1.4.2 Disjunction (OR/?); 1.4.3 Exclusive OR; 1.4.4 Conjunction (and/?); 1.4.5 Conditional (?); 1.4.6 Biconditional (?); 1.4.7 NAND (?); 1.4.8 NOR (?); 1.4.9 Well-formed Formula; 1.4.10 Rules of Precedence; 1.5 Tautology; 1.6 Contradiction; 1.7 Logical Equivalence; 1.8 Tautological Implication; 1.9 Converse, Inverse, and Contrapositive; 1.10 Functionally Complete Set of Connectives; 1.11 Normal Forms; 1.11.1 Elementary Product; 1.11.2 Elementary Sum; 1.11.3 Disjunctive Normal Form; 1.11.4 Conjunctive Normal Form; 1.11.5 Principal Disjunctive Normal Form; 1.11.6 Principal Conjunctive Normal Form; 1.12 Argument; 1.12.1 Checking the Validity of an Argument by Constructing Truth Table; 1.12.2 Checking the Validity of an Argument without Constructing Truth Table; 1.13 Predicates; 1.13.1 Quantifiers; 1.13.2 Free and Bound Variables; 1.13.3 Negation of Quantifiers; 1.13.4 Removing Quantifiers from Predicates; 1.14 Nested Quantifiers; 1.14.1 Effect of Order of Quantifiers; 1.15 Inference Theory of Predicate Calculus; 1.15.1 Universal Specification; 1.15.2 Existential Specification; 1.15.3 Universal Generalization; 1.15.4 Existential Generalization; 1.15.5 Substitution; 1.15.6 First-order and Second-order Logic; 1.16 Methods of Proof; 1.16.1 Trivial Proof; 1.16.2 Vacuous Proof; 1.16.3 Direct Proof; 1.16.4 Proof by Contradiction; 1.16.5 Proof by Contraposition; 1.16.6 Proof by Cases; 1.16.7 Exhaustive Proof; 1.16.8 Proof by Mathematical Induction; 1.16.9 Proof by Minimal Counter Example; 1.17 Satisfiability and Consistency; 1.18 Mechanization of Reasoning; 1.18.1 Russells Paradox; 2. Set Theory; 2.1 Introduction; 2.2 Sets; 2.2.1 Roster Notation; 2.2.2 Set-builder Notation; 2.2.3 Cardinality of Sets; 2.3 Some Standard Sets; 2.3.1 Empty Set; 2.3.2 Singleton Set; 2.3.3 Finite and Infinite Sets; 2.3.4 Countable and Uncountable Sets; 2.3.5 Universal Set; 2.4 Subset and Proper Subset; 2.5 Equality of Sets; 2.6 Power Set; 2.7 Venn Diagrams; 2.8 Operations on Sets; 2.8.1 Union; 2.8.2 Intersection; 2.8.3 Difference of Two Sets; 2.8.4 Symmetric Difference of Two Sets; 2.8.5 Complement of a Set; 2.8.6 Generalized Union and Intersection; 2.9 Some Other Classes of Sets; 2.9.1 Disjoint Sets; 2.9.2 Partition; 2.9.3 Ordered Set; 2.9.4 Cartesian Product of Sets; 2.10 Algebra of Sets; 2.11 Multisets; 2.12 Fuzzy Sets; 2.12.1 Operations on Fuzzy Sets; 2.12.2 ?? Cut and Strong ?? Cut; 2.12.3 Support, Core, and Height of Fuzzy Sets; 3.Relations; 3.1 Introduction; 3.2 Relation; 3.2.1 Domain and Range; 3.2.2 Inverse of Relation; 3.3 Combining Relations; 3.3.1 Composition of Relations; 3.4 Different Types of Relations; 3.4.1 Reflexive Relation; 3.4.2 Symmetric Relation; 3.4.3 Transitive Relation; 3.4.4 Compatible Relation; 3.4.5 Equivalence Relation; 3.4.6 Irreflexive Relation; 3.4.7 Asymmetric Relation; 3.4.8 Anti-symmetric Relation; 3.4.9 Partial Order Relation; 3.5 Pictorial or Graphical Representation of Relations; 3.6 Matrix Representation of Relations; 3.7 Closure of Relations; 3.7.1 Reflexive Closure; 3.7.2 Symmetric Closure; 3.7.3 Transitive Closure; 3.8 Warshalls Algorithm; 3.9 n-Ary Relations; 4. Functions; 4.1 Introduction; 4.2 Definition of Function; 4.3 Relations Vs Functions; 4.4 Types of Functions; 4.4.1 OneOne Function; 4.4.2 ManyOne Function; 4.4.3 Onto Function; 4.4.4 Identity Function; 4.4.5 Constant Function; 4.4.6 Invertible Function; 4.5 Composition of Functions; 4.6 Sum and Product of Functions; 4.7 Functions Used in Computer Science; 4.7.1 Floor Function; 4.7.2 Ceiling Function; 4.7.3 Remainder Function/Modular Arithmetic; 4.7.4 Characteristic Function; 4.7.5 Hash Function; 4.8 Collision Resolution; 4.8.1 Open Addressing; 4.8.2 Chaining; 4.9 Investigation of Functions; 5. Properties of Integers; 5.1 Introduction; 5.2 Basic Properties of Z; 5.3 Well-Ordering Principle; 5.4 Elementary Divisibility Properties; 5.5 Greatest Common Divisor; 5.6 Least Common Multiple; 5.7 Linear Diophantine Equation; 5.8 Fundamental Theorem of Arithmetic; 5.8.1 Primes and Composites; 5.8.2 Relatively Prime Integers; 5.9 Congruence Relation; 5.10 Residue Classes; 5.11 Linear Congruence; 6. Counting Techniques; 6.1 Introduction; 6.2 Basic Counting Principle; 6.2.1 Sum Rule; 6.2.2 Product Rule; 6.2.3 InclusionExclusion Principle; 6.3 Permutations and Combinations; 6.3.1 Permutation; 6.3.2 Combination; 6.4 Generalized Permutation and Combination; 6.4.1 Permutation with Repetition; 6.4.2 Permutations with Identical Objects; 6.4.3 Combination with Repetition; 6.5 Binomial Coefficients; 6.6 Partition; 6.7 Pigeonhole Principle; 6.7.1 Generalized Pigeonhole Principle; 6.8 Arrangements with Forbidden Positions; 6.8.1 Rook Polynomial; 6.8.2 Derangement; 7. Fundamentals of Probability; 7.1 Introduction; 7.2 Random Experiment; 7.3 Sample Space; 7.4 Event; 7.4.1 Equally Likely Events; 7.4.2 Mutually Exclusive Events; 7.4.3 Exhaustive Events; 7.4.4 Independent Events; 7.4.5 Dependent Events; 7.4.6 Complementary Event; 7.5 Measurement of Probability; 7.5.1 Classical or Priori Approach of Probability; 7.5.2 Relative Frequency Approach of Probability; 7.6 Axioms of Probability; 7.7 Conditional Probability; 7.8 Bayes Theorem; 7.9 Discrete Probability Distributions; 7.9.1 Expectation of Random Variable; 7.9.2 Variance and Standard Deviation of Random Variables; 7.9.3 Binomial Distribution; 7.9.4 Poisson Distribution; 7.9.5 Negative Binomial Distribution; 7.9.6 Geometric Distribution; 8. Discrete Numeric Functions and Generating Functions; 8.1 Introduction; 8.2 Manipulation of Numeric Functions; 8.2.1 Sum and Product of Two Numeric Functions; 8.2.2 Multiplication with Scalar; 8.2.3 Modulus of Numeric Function; 8.2.4 Siar and S-iar of Numeric Function; 8.2.5 Forward and Backward Differences of Numeric Functions; 8.2.6 Accumulated Sum; 8.2.7 Convolution of Two Numeric Functions; 8.3 Generating Functions; 8.3.1 Properties of Generating Functions; 8.3.2 Solution of Combinatorial Problems Using Generating Functions; 9. Recurrence Relations; 9.1 Introduction; 9.2 Recursive Definition; 9.2.1 Recursively Defined Functions; 9.2.2 Recursively Defined Sets; 9.3 Recurrence Relation; 9.4 Solution of Recurrence Relations; 9.4.1 Iterative Method; 9.4.2 Recursive Method; 9.4.3 Generating Function; 9.5 Structural Induction; 9.6 Order and Degree of Recurrence Relations; 9.7 Linear Recurrence Relation with Constant Coefficients; 9.7.1 Linear Homogeneous Recurrence Relation with Constant Coefficients; 9.7.2 Linear Non-homogeneous Recurrence Relation with Constant Coefficients; 10. Algebraic Structures; 10.1 Introduction; 10.2 Binary Operations; 10.2.1 Semi-Group; 10.2.2 Monoid; 10.2.3 Group; 10.3 Addition and Multiplication Modulo m; 10.4 Subgroup; 10.4.1 Cosets; 10.5 Permutations and Symmetric Group; 10.5.1 Cyclic Permutation; 10.5.2 Stabilizer of an Element; 10.5.3 Orbit of an Element; 10.5.4 Invariant Elements under Permutation; 10.6 Cyclic Group; 10.7 Normal Subgroup; 10.8 Quotient Group; 10.9 Dihedral Group; 10.10 Homomorphism and Isomorphism; 10.10.1 Kernel of Homomorphism; 10.11 Ring; 10.11.1 Commutative Ring; 10.11.2 Ring with Unity; 10.11.3 Zero Divisor of a Ring; 10.11.4 Subrings; 10.11.5 Ring Homomorphism; 10.12 Integral Domain; 10.13 Division Ring or Skew Field; 10.14 Field; 10.15 Polynomial Ring; 10.16 Boolean Algebra; 10.16.1 Duality; 10.16.2 Boolean Functions; 10.16.3 Simplification of Boolean Functions; 10.16.4 Canonical Form; 10.16.5 Standard Form; 10.16.6 Other Logic Operations; 10.16.7 Karnaugh Map; 10.16.8 QuineMccluskey Method; 10.16.9 Free Boolean Algebra; 11. Posets and Lattices; 11.1 Introduction; 11.2 Partially Ordered Set; 11.3 Diagrammatic Representation of Poset (Hasse Diagram); 11.4 Elements in Posets; 11.4.1 Least and Greatest Elements; 11.4.2 Minimal and Maximal Elements; 11.4.3 Lower and Upper Bounds; 11.4.4 Greatest Lower Bound and Least Upper Bounds; 11.5 Linearly Ordered Set; 11.6 Well-Ordered Set; 11.7 Product Order; 11.8 Lexicographic Order; 11.9 Topological Sorting and Consistent Enumeration; 11.10 Isomorphism; 11.11 Lattices; 11.12 Properties of Lattices; 11.12.1 Principle of Duality; 11.12.2 Sublattice; 11.13 Some Special Lattices; 11.13.1 Modular Lattice; 11.13.2 Distributive Lattice; 11.13.3 Bounded Lattice; 11.13.4 Complemented Lattice; 11.13.5 Complete Lattice; 11.14 Product of Lattices; 11.15 Lattice Homomorphism; 11.16 Boolean Algebra and Lattices; 11.17 Stones Representation Theorem; 12. Formal Languages and Finite Automata; 12.1 Introduction; 12.2 Alphabet and Words; 12.3 Language; 12.4 Operations on Languages; 12.5 Finite Automata; 12.5.1 Deterministic Finite State Automata; 12.5.2 Non-Deterministic Finite Automata; 12.5.3 Conversion from Non-Deterministic Finite Automata to Deterministic Finite Automata; 12.5.4 Minimization of Finite Automata; 12.6 Finite Automata with Outputs; 12.6.1 Mealy Machine; 12.6.2 Moore Machine; 12.6.3 Equivalence of Mealy and Moore Machines; 12.6.4 Conversion from Mealy to Moore Machine; 12.6.5 Conversion from Moore to Mealy Machine; 12.7 Regular Expression; 12.8 Regular Expression and Finite Automata; 12.9 Generalized Transition Graph; 12.10 Grammar of Formal Languages; 12.10.1 Phrase Structure Grammar; 12.10.2 Chomsky Hierarchy; 12.11 Other Machines; 13. Graph Theory; 13.1 Introduction; 13.2 Graph and its Related Definitions; 13.3 Different Types of Graphs; 13.3.1 Simple Graph; 13.3.2 Multigraph, Trivial Graph, and Null Graph; 13.3.3 Complete Graph; 13.3.4 Regular Graph; 13.3.5 Bipartite Graph; 13.3.6 Weighted Graph; 13.4 Subgraphs; 13.5 Operations on Graphs; 13.5.1 Union of Two Graphs; 13.5.2 Intersection of Two Graphs; 13.5.3 Ring Sum of Two Graphs; 13.5.4 Decomposition of a Graph; 13.5.5 Deletion of a Vertex; 13.5.6 Deletion of an Edge; 13.5.7 Complement of a Graph; 13.6 Walk, Path, and Circuit; 13.6.1 Walk; 13.6.2 Path; 13.6.3 Circuit; 13.7 Connected Graph, Disconnected Graph, and Components; 13.8 Homomorphism and Isomorphism of Graphs; 13.9 Homeomorphic Graphs; 13.10 Euler and Hamiltonian Graphs; 13.10.1 Euler Line and Euler Graph; 13.10.2 Hamiltonian Path and Hamiltonian Circuit; 13.10.3 Travelling Salesman Problem; 13.11 Planar Graph; 13.11.1 Kuratowskis Two Graphs; 13.11.2 Region and its Degree; 13.11.3 Eulers Formula; 13.12 Tree; 13.12.1 Rooted Tree; 13.12.2 Binary Tree; 13.12.3 Height of Binary Tree; 13.12.4 Spanning Tree; 13.12.5 Branch and Chord; 13.12.6 Rank and Nullity; 13.12.7 Fundamental Circuits; 13.12.8 Finding All Spanning Trees of a Graph; 13.12.9 Spanning Trees in a Weighted Graph; 13.12.10 Kruskals Algorithm; 13.12.11 Prims Algorithm; 13.12.12 Dijkstra Algorithm; 13.12.13 Binary Search Tree; 13.13 Cut Set and Cut Vertex; 13.14 Colouring of Graphs; 13.14.1 Chromatic Number; 13.14.2 Chromatic Partitioning; 13.14.3 Independence Set and Maximal Independence Set; 13.14.4 Maximum Independence Set and Independence Number; 13.14.5 Clique and Maximal Clique; 13.14.6 Maximum Clique and Clique Number; 13.14.7 Perfect Graph; 13.14.8 Chromatic Polynomial; 13.14.9 Applications of Graph Colouring; 13.15 Matching; 13.15.1 Maximal Matching, Maximum Matching, and Matching Number; 13.15.2 Perfect Matching; 13.16 Matrix Representation of Graphs; 13.16.1 Incidence Matrix; 13.16.2 Circuit Matrix; 13.16.3 Cut Set Matrix; 13.16.4 Path Matrix; 13.16.5 Adjacency Matrix; 13.17 Traversal of Graphs; 13.17.1 Breadth-First Search; 13.17.2 Depth-First Search; 13.18 Traversing Binary Trees; 13.18.1 Pre-Order Traversal; 13.18.2 In-Order Traversal; 13.18.3 Post-Order Traversal; 13.19 Digraph or Directed Graph; 13.20 Network Flow; 13.20.1 Cut in a Transport Network; 13.20.2 Flow Augmenting Path; 13.21 Enumeration of Graphs; 14. Applications of Discrete Mathematical Structures; 14.1 Introduction; 14.2 Asymptotic Behaviour of Numeric Functions; 14.2.1 Big-Oh (O) Notation; 14.2.2 Omega (?) Notation; 14.2.3 Theta (q) Notation; 14.3 Analysis of Algorithms; 14.3.1 Space Complexity; 14.3.2 Time Complexity; 14.4 Analysis of Sorting Algorithms; 14.4.1 Insertion Sort; 14.4.2 Bubble Sort; 14.4.3 Selection Sort; 14.5 Divide-and-Conquer Approach; 14.5.1 Merge Sort; 14.5.2 Quick Sort; 14.6 Analysis of Searching Algorithms; 14.6.1 Linear Search; 14.6.2 Binary Search; 14.7 Tractable and Intractable Problems; 14.8 Logic Gates; 14.8.1 Switching Circuits and Logic Gates; 14.8.2 NAND and NOR Implementations; 14.9 Combinational Circuits; 14.9.1 Half Adder; 14.9.2 Full Adder; 14.9.3 Half Subtractor; 14.9.4 Full Subtractor; 14.10 Information and Coding Theory; 14.10.1 Discrete Information Sources; 14.10.2 Entropy; 14.10.3 Mutual Information; 14.10.4 Coding Theory; 14.10.5 Hamming Distance; 14.10.6 Error-Detecting and Error-Correcting Codes; 14.10.7 Group Codes; 14.10.8 Generator Matrices; 14.10.9 Parity Check Matrices; 14.10.10 Coset Decoding; 14.10.11 Prefix Codes; 14.10.12 Cyclic Code; Appendices
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐