MINIMAL SUBMANIFOLDS IN PSEUDO-RIEMANNIAN GEOMETRY

伪黎曼几何中的极小子流形

几何学

原   价:
785
售   价:
628.00
优惠
平台大促 低至8折优惠
发货周期:预计3-5周发货
作      者
出  版 社
出版时间
2010年11月03日
装      帧
精装
ISBN
9789814291248
复制
页      码
184
语      种
英文
综合评分
暂无评分
我 要 买
- +
库存 30 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equations and complex analysis. On the other hand, the relativity theory has led to the study of pseudo-Riemannian manifolds, which turns out to be the most general framework for the study of minimal submanifolds. However, most of the recent books on the subject still present the theory only in the Riemannian case. For the first time, this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian geometry, only assuming from the reader some basic knowledge about manifold theory. Several classical results, such as the Weierstrass representation formula for minimal surfaces, and the minimizing properties of complex submanifolds, are presented in full generality without sacrificing the clarity of exposition. Finally, a number of very recent results on the subject, including the classification of equivariant minimal hypersurfaces in pseudo-Riemannian space forms and the characterization of minimal Lagrangian surfaces in some pseudo-Kähler manifolds are given. Key Features • One of the first books exposing the theory of minimal submanifolds in the general setting of pseudo-Riemannian geometry • An accessible text suitable for students, yet of interest to researchers in differential geometry and mathematical physics • Showcases several of the most recent research results on the subject in a unified and easily understood presentation
馆藏图书馆
Yale University Library
本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个